Home
Class 9
MATHS
(x+2y-z)^2...

`(x+2y-z)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Factorize each of the following expressions: x(x^2+y^2-z^2)+y(-x^2-y^2+z^2)-z(x^2+y^2-z^2)

Simplify: (x^2+y^2-z^2)^2-\ \ (x^2-y^2+z^2)^2

The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2)) is -1(b)0(c)1(d) None of these

The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2))

Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx),(z^(2),,z^(2)-(x-y)^(2),,xy):}| =(x-y) (y-z) (z-x)(x+y+z) (x^(2)+y^(2)+z^(2))

Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx),(z^(2),,z^(2)-(x-y)^(2),,xy):}| =(x-y) (y-z) (z-x)(x+y+z) (x^(2)+y^(2)+z^(2))

Prove that |(x^(2),x^(2)-(y-z)^(2),yz),(y^(2),y^(2)-(z-x)^(2),zx),(z^(2),z^(2)-(x-y)^(2),xy)|=(x-y)(y-z)(z-x)(x+y+z)(x^(2) + y^(2) + z^(2)) .

Factorise x^(2)-(y-z)^(2) .

Factorise x^(2)-(y-z)^(2) .