Home
Class 12
MATHS
lim(x rarr0)((log(1+x))/(x))^(1/x)=...

lim_(x rarr0)((log(1+x))/(x))^(1/x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin log(1-x))/(x)

lim_(x rarr0)(log_(e)(1+x))/(x)

lim_(x rarr0)x log x .

lim_(x rarr0)x log(sin x)

lim_(x rarr0)(log(1-(x)/(2)))/(x)

lim_(X rarr0)log|(log(1+x))/(x)|

If lim_(x rarr0)[1+x+(f(x))/(x)]^((1)/(x))=e^(3), then the value of ln(lim_(x rarr0)[1+(f(x))/(x)]^((1)/(x))) is

lim_(x rarr 0) (log(1+x))/(3^x-1)=1/(log_(e)(3))

lim_(x rarr0)((sqrt(1+x)-1)/(x))

lim_(x rarr0)((1+x)^(4)-1)/(x)