Home
Class 12
MATHS
int(-1)^(3)(Tan^(-1)(x)/(x^(2)+1)+tan^(-...

int_(-1)^(3)(Tan^(-1)(x)/(x^(2)+1)+tan^(-1)(x^(2)+1)/(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(4)[tan^(-1)((x)/(x^(2)+1))+tan^(-1)((x^(2)+1)/(x))]dx is

int_(-1)^(3)[tan^(-1).(x)/(x^(2)+1)+cot^(-1).(x)/(x^(2)+1)]dx

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

int_(0)^(1)(tan^(-1)x)/((1+x^(2)))dx

int_(0)^(1)tan^(-1)(1-x+x^(2))dx

int_(0)^(x)tan^(-1)(1-x+x^(2))dx

The value of int_(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(2)))dx is

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to

tan^(-1)x+(tan^(-1)(2x))/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3))