Home
Class 12
MATHS
Prove that: tan^(-1){(cos2alphasec2beta...

Prove that: `tan^(-1){(cos2alphasec2beta+cos2betasec2alpha)/2}=tan^(-1){tan^2(alpha+beta)tan^2(alpha-beta)}+tan^(-1)1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1){(cos2\ alphasec2\ beta+cos2betasec2alpha)/2}=tan^(-1){t a n^2(alpha+beta)t a n^2(alpha-beta)}+tan^(-1)1

Prove that : tan^(-1){(cos2\ alphasec2\ beta+cos2betasec2alpha)/2}=tan^(-1){t a n^2(alpha+beta)t a n^2(alpha-beta)}+tan^(-1)1

Prove that : tan^(-1){(cos2\ alphasec2\ beta+cos2betasec2alpha)/2}=tan^(-1){t a n^2(alpha+beta)t a n^2(alpha-beta)}+tan^(-1)1

Prove that: tan^(-1){(cos2 alpha sec2 beta+cos2 beta sec2 alpha)/(2)}=tan^(-1){tan^(2)(alpha+beta)tan^(2)(alpha-beta)}+tan

(cos^2alpha-cos^2beta)/(cos^2alpha cos^2beta)=tan^2beta-tan^2alpha

Prove that cos^(-1)[(cos alpha +cos beta)/(1+cos alpha cos beta)]=2tan^(-1)("tan"(alpha)/(2)"tan"(beta)/(2))

(cos^(2)alpha-cos^(2)beta)/(cos^(2)alpha*cos^(2)beta)=tan^(2)beta-tan^(2)alpha

Prove that (cos^2 alpha - cos^2 beta)/(cos^2 alpha*cos^2 beta) = tan^2 beta - tan^2 alpha

If tan beta =(n tan alpha )/(1+(1-n) tan^(2) alpha ) , then tan(alpha-beta)=

Prove that (cos2 alpha-cos 2 beta)/(sin2 alpha+sin2 beta)=tan(beta-alpha)