Home
Class 11
MATHS
lim(x rarr(pi)/(4))(cot^(3)x-tan x)/(cos...

lim_(x rarr(pi)/(4))(cot^(3)x-tan x)/(cos(x+(pi)/(4)))" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x+(5pi)/(4))) is equal to

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x-(5pi)/(4))) is equal to

The value of lim_(x rarr(pi)/(3))(tan^(3)x-3tan x)/(cos(x+(pi)/(6)))is:

lim_(x rarr(pi)/(2))(cot x-cos x)/(cos^(3)x)

If alpha = lim_(x rarr pi//4)""(tan^(3)x - tan x)/(cos (x + (pi)/(4))) and beta = lim_(x rarr 0)(cos x)^(cot x) are the roots of the equation, a x^(2) + bx -4 = 0 , then the ordered pair (a, b) is :

The value of lim_(x rarr(pi)/(3))((tan^(3)x-3*tan x)/(cos(x+(pi)/(6))))

lim_ (x rarr (pi) / (4)) (1-tan x) / (x- (pi) / (4))

The value of lim_(x rarr pi/4)(tan^(3)x-tan x)/(cos(x+(pi)/(4))) is 8 b.4 c.-8d .-2

lim_(x rarr(pi+)/(2))((cos(tan^(-1)(tan x)))/(x-(pi)/(2)))

lim_ (x rarr (pi) / (4)) (tan ^ (3) x-tan x) / (cos (x + (pi) / (4)))