Home
Class 11
MATHS
sin^3((2pi)/3+alpha)=1/4(3sin((2pi)/3+al...

`sin^3((2pi)/3+alpha)=1/4(3sin((2pi)/3+alpha)-sin(2pi+3alpha)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos3theta=cos3alpha, then the value of sintheta can be given by +-sinalpha (b) sin(pi/3+-alpha) sin((2pi)/3+alpha) (d) sin((2pi)/3-alpha)

If cos3theta=cos3alpha, then the value of sintheta can be given by +-sinalpha (b) sin(pi/3+-alpha) sin((2pi)/3+alpha) (d) sin((2pi)/3-alpha)

If cos3theta=cos3alpha, then the value of sintheta can be given by +-sinalpha (b) sin(pi/3+-alpha) sin((2pi)/3+alpha) (d) sin((2pi)/3-alpha)

If cos3theta=cos3alpha, then the value of sintheta can be given by +-sinalpha (b) sin(pi/3+-alpha) sin((2pi)/3+alpha) (d) sin((2pi)/3-alpha)

If cos3 theta=cos3 alpha, then the value of sin theta can be given by +-sin alpha(b)sin((pi)/(3)+-alpha)sin((2 pi)/(3)+alpha)(d)sin((2 pi)/(3)-alpha)

Show that 3{sin^4((3pi)/2-alpha)+sin^4(3pi+alpha)}-2{sin^6(pi/2+alpha)+ sin^6(5pi-alpha)}=1

3[sin^4((3pi)/2-alpha)+sin^4(3pi+alpha)]-2[sin^6(pi/2+alpha)+sin^6(5pi-alpha)]=

Prove the identity,cos((3 pi)/(2)+4 alpha)+sin(3 pi-8 alpha)-sin(4 pi-12 alpha)=4cos2 alpha cos4 alpha sin6 alpha

The value of sin^(2)alpha+sin((pi)/(3)-alpha)sin((pi)/(3)+alpha) is

(1)/(sin3alpha)[sin^(3)alpha+sin^(3)((2pi)/(3)+alpha)+sin^(3)((4pi)/(3)+alpha)] is equal to