Home
Class 12
MATHS
int(e^(2x)+2e^x-e^(-x)-1)e^(e^x+e^(-x))d...

`int(e^(2x)+2e^x-e^(-x)-1)e^(e^x+e^(-x))dx=g(x)e^(e^x+e^(-x))` , then find `g(0)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral equation and find \( g(0) \), we start with the equation: \[ \int (e^{2x} + 2e^x - e^{-x} - 1)e^{(e^x + e^{-x})} \, dx = g(x)e^{(e^x + e^{-x})} \] ### Step 1: Differentiate both sides We differentiate both sides with respect to \( x \). The left-hand side becomes: \[ \frac{d}{dx} \left( \int (e^{2x} + 2e^x - e^{-x} - 1)e^{(e^x + e^{-x})} \, dx \right) = (e^{2x} + 2e^x - e^{-x} - 1)e^{(e^x + e^{-x})} \] For the right-hand side, we apply the product rule: \[ \frac{d}{dx} \left( g(x)e^{(e^x + e^{-x})} \right) = g'(x)e^{(e^x + e^{-x})} + g(x) \frac{d}{dx}(e^{(e^x + e^{-x})}) \] Using the chain rule, we find: \[ \frac{d}{dx}(e^{(e^x + e^{-x})}) = e^{(e^x + e^{-x})}(e^x - e^{-x}) \] Thus, the right-hand side becomes: \[ g'(x)e^{(e^x + e^{-x})} + g(x)e^{(e^x + e^{-x})}(e^x - e^{-x}) \] ### Step 2: Set the two sides equal Now we equate the two sides: \[ (e^{2x} + 2e^x - e^{-x} - 1)e^{(e^x + e^{-x})} = g'(x)e^{(e^x + e^{-x})} + g(x)e^{(e^x + e^{-x})}(e^x - e^{-x}) \] We can cancel \( e^{(e^x + e^{-x})} \) from both sides (assuming it is non-zero): \[ e^{2x} + 2e^x - e^{-x} - 1 = g'(x) + g(x)(e^x - e^{-x}) \] ### Step 3: Rearranging the equation Rearranging gives us: \[ g'(x) + g(x)(e^x - e^{-x}) = e^{2x} + 2e^x - e^{-x} - 1 \] ### Step 4: Solve the differential equation This is a first-order linear differential equation in \( g(x) \). We can solve it using an integrating factor or by inspection. Let’s assume \( g(x) = e^x + C \) for some constant \( C \). Then: \[ g'(x) = e^x \] Substituting \( g(x) \) and \( g'(x) \) into the equation: \[ e^x + (e^x + C)(e^x - e^{-x}) = e^{2x} + 2e^x - e^{-x} - 1 \] ### Step 5: Simplifying Expanding the left side: \[ e^x + (e^x + C)(e^x - e^{-x}) = e^x + e^{2x} - 1 + C(e^x - e^{-x}) \] Setting the left side equal to the right side: \[ e^x + e^{2x} - 1 + C(e^x - e^{-x}) = e^{2x} + 2e^x - e^{-x} - 1 \] ### Step 6: Comparing coefficients From here, we can compare coefficients of \( e^x \) and \( e^{-x} \): 1. Coefficient of \( e^{2x} \): \( 1 = 1 \) (satisfied) 2. Coefficient of \( e^x \): \( 1 + C = 2 \) → \( C = 1 \) 3. Coefficient of \( e^{-x} \): \( -C = -1 \) → \( C = 1 \) Thus, we find: \[ g(x) = e^x + 1 \] ### Step 7: Find \( g(0) \) Now we can find \( g(0) \): \[ g(0) = e^0 + 1 = 1 + 1 = 2 \] ### Final Answer: Thus, the value of \( g(0) \) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

inte^(x)(e^(x)-e^(-x))dx=

int (e^(2x) +e^(-2x))/(e^(x)) dx

inte^x/(e^x+e^(-x))dx

int(e^(2x)+e^(-2x))/(e^(x)+e^(-x))dx=

int(e^(x))/(e^(x)+e^(-x))dx

int ((e ^(2x) + e ^(-2x)))/( e^(x)) dx =

int(e^(e^x)e^(x)+x)dx=

int (e^(x))/(e^(x) + e^(-x))dx

int((e^(x)+e^(-x))^(2))/((e^(x)-e^(-x))^(2))dx=

Evaluate: int(e^(x)-e^(-x))/(e^(x)+e^(-x))dx