Home
Class 12
MATHS
If volume of parallelopiped whose coterm...

If volume of parallelopiped whose coterminus edges are `bara=hati+hatj+nhatk,vecb=bar2hati+4hatj-nhatk,barc=hati+nhatj+3hatk` is 158 cu units.

A

`barb.barc=10`

B

`bara.barc=17`

C

`n=7`

D

`n=9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( n \) given the volume of the parallelepiped formed by the vectors \( \vec{a} = \hat{i} + \hat{j} + n\hat{k} \), \( \vec{b} = 2\hat{i} + 4\hat{j} - n\hat{k} \), and \( \vec{c} = \hat{i} + n\hat{j} + 3\hat{k} \), we will use the formula for the volume of a parallelepiped, which is given by the absolute value of the scalar triple product of the vectors. This can be computed using the determinant of a matrix formed by the components of the vectors. ### Step-by-step Solution: 1. **Write the vectors in component form**: \[ \vec{a} = (1, 1, n), \quad \vec{b} = (2, 4, -n), \quad \vec{c} = (1, n, 3) \] 2. **Set up the determinant for the volume**: The volume \( V \) of the parallelepiped is given by: \[ V = |\vec{a} \cdot (\vec{b} \times \vec{c})| = \left| \begin{vmatrix} 1 & 1 & n \\ 2 & 4 & -n \\ 1 & n & 3 \end{vmatrix} \right| \] We know that this volume is equal to 158 cubic units. 3. **Calculate the determinant**: Expanding the determinant: \[ V = \begin{vmatrix} 1 & 1 & n \\ 2 & 4 & -n \\ 1 & n & 3 \end{vmatrix} \] Using the cofactor expansion along the first row: \[ = 1 \cdot \begin{vmatrix} 4 & -n \\ n & 3 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & -n \\ 1 & 3 \end{vmatrix} + n \cdot \begin{vmatrix} 2 & 4 \\ 1 & n \end{vmatrix} \] Now, calculate each of these 2x2 determinants: - First determinant: \[ \begin{vmatrix} 4 & -n \\ n & 3 \end{vmatrix} = (4 \cdot 3) - (-n \cdot n) = 12 + n^2 \] - Second determinant: \[ \begin{vmatrix} 2 & -n \\ 1 & 3 \end{vmatrix} = (2 \cdot 3) - (-n \cdot 1) = 6 + n \] - Third determinant: \[ \begin{vmatrix} 2 & 4 \\ 1 & n \end{vmatrix} = (2 \cdot n) - (4 \cdot 1) = 2n - 4 \] Substitute these back into the determinant: \[ V = 1(12 + n^2) - 1(6 + n) + n(2n - 4) \] Simplifying this gives: \[ V = 12 + n^2 - 6 - n + 2n^2 - 4n = 3n^2 - 5n + 6 \] 4. **Set the volume equal to 158**: \[ 3n^2 - 5n + 6 = 158 \] Rearranging gives: \[ 3n^2 - 5n - 152 = 0 \] 5. **Solve the quadratic equation**: Using the quadratic formula \( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 3 \), \( b = -5 \), and \( c = -152 \). \[ n = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot (-152)}}{2 \cdot 3} \] \[ = \frac{5 \pm \sqrt{25 + 1824}}{6} \] \[ = \frac{5 \pm \sqrt{1849}}{6} \] \[ = \frac{5 \pm 43}{6} \] This gives us two possible values for \( n \): \[ n = \frac{48}{6} = 8 \quad \text{and} \quad n = \frac{-38}{6} \text{ (not valid since } n \text{ must be positive)} \] 6. **Check the options**: The only valid value for \( n \) is \( 8 \). 7. **Calculate \( \vec{a} \cdot \vec{c} \) and \( \vec{b} \cdot \vec{c} \)**: - For \( \vec{a} \cdot \vec{c} \): \[ \vec{a} = (1, 1, 8), \quad \vec{c} = (1, 8, 3) \] \[ \vec{a} \cdot \vec{c} = 1 \cdot 1 + 1 \cdot 8 + 8 \cdot 3 = 1 + 8 + 24 = 33 \] - For \( \vec{b} \cdot \vec{c} \): \[ \vec{b} = (2, 4, -8) \] \[ \vec{b} \cdot \vec{c} = 2 \cdot 1 + 4 \cdot 8 + (-8) \cdot 3 = 2 + 32 - 24 = 10 \] ### Final Results: - The value of \( n \) is \( 8 \). - \( \vec{b} \cdot \vec{c} = 10 \) (which is one of the options).
Promotional Banner

Similar Questions

Explore conceptually related problems

The valume of the parallelopiped whose coterminous edges are hati-hatj+hatk,2hati-4hatj+5hatk and 3hati-5hatj+2hatk , is

The volume of the parallelepiped whose edges are veca=2hati-3hatj+4hatk, vecb=hati+2hatj-hatk and vecc=2hati-hatj+2hatk is

Find th altitude of a parallelepiped whose three coterminous edges are vectors vecA=hati+hatj+hatk,vecB=2hati+4hatj-hatkand vecC=hati+hatj+3hatk "with" vecA and vecB as the sides of the base of the parallelepiped .

Find th altitude of a parallelepiped whose three coterminous edges are vectors vecA=hati+hatj+hatk,vecB=2hati+4hatj-hatkand vecC=hati+hatj+3hatk "with" vecA and vecB as the sides of the base of the parallelepiped .

If the volume of a parallelopiped ,whose coterminus edges are given by the vectors veca = hati + hatj + nhatk , vecb = 2 hati + 4 hatj - n hatk and vec c = hati + n hatj + 3 hatk ( n ge 0) , is 158 cu. Units , then :

Find the volume of the parallelopiped whose edges are represented by a=2hati-3hatj+4hatk,b=hati+2hatj-hatk and c=3hati-hatj+2hatk .

If the volume of parallelopiped with coterminous edges 4hati+5hatj+hatk, - hatj+hatk and 3hati+9hatj+phatk is 34 cu units, then p is equal to

Find the volume of the parallelopiped whose conterminus edges are given by vectros 2hati+3hatj-4hatk,hatk+7hatj+5hatk and 4hati+5hatj-2hatk .

The volume of the parallelepiped formed by the vectors, veca=2hati+3hatj-hatk, vecb = hati-4hatj+2hatk and vecc=5hati+hatj+hatk is