Home
Class 12
MATHS
If I=int(-pi/2)^(pi/2) 1/(1+e^(sinx))dx ...

If `I=int_(-pi/2)^(pi/2) 1/(1+e^(sinx))dx` then `I` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{1 + e^{\sin x}} \, dx \), we can use a property of definite integrals. ### Step-by-Step Solution: 1. **Use the property of definite integrals**: We know that: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] For our case, \( a = -\frac{\pi}{2} \) and \( b = \frac{\pi}{2} \). Thus, we can write: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{1 + e^{\sin x}} \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{1 + e^{\sin(-x)}} \, dx \] 2. **Simplify the expression**: Since \( \sin(-x) = -\sin x \), we have: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{1 + e^{-\sin x}} \, dx \] 3. **Rewrite the integral**: We can rewrite the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{1 + \frac{1}{e^{\sin x}}} \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + 1} \, dx \] 4. **Combine the two expressions for \( I \)**: Now we have two expressions for \( I \): \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{1 + e^{\sin x}} \, dx \] \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^{\sin x}}{e^{\sin x} + 1} \, dx \] 5. **Add the two integrals**: Adding these two integrals gives: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{1}{1 + e^{\sin x}} + \frac{e^{\sin x}}{e^{\sin x} + 1} \right) \, dx \] Simplifying the integrand: \[ \frac{1 + e^{\sin x}}{1 + e^{\sin x}} = 1 \] Therefore: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx \] 6. **Evaluate the integral**: The integral of 1 from \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\) is: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \pi \] Thus: \[ 2I = \pi \implies I = \frac{\pi}{2} \] ### Final Answer: \[ I = \frac{\pi}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_(-pi//2)^(pi//2)1/(1+e^(sinx))dx

int_(pi/3)^(pi/2) sinx dx

int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1)dx is equal to

int_(-pi/2)^(pi/2)(1+sin^2x)/(1+pi^(sinx))dx=

I=int_(0)^(2pi)(1)/(1+e^(sinx))dx is equal to

The value of int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1) dx is equal to

The value of int_(-pi/2)^(pi/2) ((1+sin^(2)x)/(1 +pi^(sinx))) dx is

int_(0)^(pi//2) e^x(sinx+cosx) dx

int_(0)^( pi/2)(cosx)/(1+sinx)dx