Home
Class 12
MATHS
If S=tan^(-1)(1/3)+tan^(-1)(1/7)+tan^(-1...

If `S=tan^(-1)(1/3)+tan^(-1)(1/7)+tan^(-1)(1/13)+....` to 10 terms. Find `tanS`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( S = \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) + \ldots \) for 10 terms and then compute \( \tan S \). ### Step-by-Step Solution: 1. **Identify the Series**: We have the series: \[ S = \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) + \ldots \] The terms can be expressed as \( \tan^{-1}\left(\frac{1}{n}\right) \) for specific values of \( n \). 2. **Use the Addition Formula for Inverse Tangent**: Recall the formula: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \quad \text{if } ab < 1 \] We will apply this formula iteratively to combine the terms. 3. **Pair the Terms**: Let's pair the terms: \[ S = \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) + \ldots + \tan^{-1}\left(\frac{1}{19}\right) \] We can express each term as: \[ \tan^{-1}\left(\frac{1}{n}\right) = \tan^{-1}(a) - \tan^{-1}(b) \] where \( a \) and \( b \) are chosen such that the argument fits the form of the addition formula. 4. **Write in Terms of Differences**: We can express: \[ S = \tan^{-1}(2) - \tan^{-1}(1) + \tan^{-1}(3) - \tan^{-1}(2) + \tan^{-1}(4) - \tan^{-1}(3) + \ldots + \tan^{-1}(11) - \tan^{-1}(10) \] This leads to a telescoping series. 5. **Simplify the Series**: After cancellation, we find: \[ S = \tan^{-1}(11) - \tan^{-1}(1) \] 6. **Combine Using the Addition Formula**: Now, we can combine these two terms: \[ S = \tan^{-1}\left(\frac{11 - 1}{1 + 11 \cdot 1}\right) = \tan^{-1}\left(\frac{10}{12}\right) = \tan^{-1}\left(\frac{5}{6}\right) \] 7. **Find \( \tan S \)**: Thus, we have: \[ \tan S = \frac{5}{6} \] ### Final Answer: \[ \tan S = \frac{5}{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(1/7)+tan^(-1)(1/9)+tan^(-1)(1/8)

PT tan^(-1)(3/4)+tan^(-1)(1/3)=tan^(-1)(13/9)

tan^(-1)(1/7)+tan^(-1)(4/7)+tan^(-1)(9/7)=.........

tan^(-1)1+tan^(-1)1/3=?

tan^(-1)3-tan^(-1)2=tan^(-1)(1/7)

tan^(-1)3-tan^(-1)2=tan^(-1)(1/7)

If A=tan^(-1)(1//7), B=tan^(-1)(1//3) , then

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)

tan^(-1)2-tan^(-1)1=tan^(-1)(1/3)