Home
Class 12
MATHS
If alpha is a positive root of p(x)= x^2...

If `alpha` is a positive root of `p(x)= x^2-x-2` Find `lim_(x rarr alpha^+) (sqrt(1-cos(p(x))))/(x-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given in the question, we will follow these steps: ### Step 1: Identify the positive root \( \alpha \) The polynomial given is \( p(x) = x^2 - x - 2 \). To find the roots, we can factor or use the quadratic formula. The roots can be calculated as follows: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -1, c = -2 \). Calculating the discriminant: \[ b^2 - 4ac = (-1)^2 - 4 \cdot 1 \cdot (-2) = 1 + 8 = 9 \] Thus, the roots are: \[ x = \frac{1 \pm 3}{2} = \{2, -1\} \] The positive root \( \alpha \) is \( 2 \). ### Step 2: Rewrite the limit We need to evaluate: \[ \lim_{x \to \alpha^+} \frac{\sqrt{1 - \cos(p(x))}}{x - 2} \] Substituting \( \alpha = 2 \): \[ \lim_{x \to 2^+} \frac{\sqrt{1 - \cos(p(x))}}{x - 2} \] ### Step 3: Evaluate \( p(x) \) at \( x = 2 \) Calculating \( p(2) \): \[ p(2) = 2^2 - 2 - 2 = 0 \] Thus, as \( x \to 2^+ \), \( p(x) \to 0 \). ### Step 4: Apply the limit We have a \( \frac{0}{0} \) form, so we can apply L'Hôpital's Rule. First, we need to express \( \sqrt{1 - \cos(p(x))} \) in terms of \( p(x) \): Using the small angle approximation: \[ 1 - \cos(\theta) \approx \frac{\theta^2}{2} \text{ as } \theta \to 0 \] Thus, \[ 1 - \cos(p(x)) \approx \frac{(p(x))^2}{2} \] Therefore, \[ \sqrt{1 - \cos(p(x))} \approx \sqrt{\frac{(p(x))^2}{2}} = \frac{|p(x)|}{\sqrt{2}} \] ### Step 5: Substitute back into the limit Now substituting this back into the limit: \[ \lim_{x \to 2^+} \frac{\frac{|p(x)|}{\sqrt{2}}}{x - 2} \] Since \( p(x) = (x - 2)(x + 1) \), we can write: \[ |p(x)| = |(x - 2)(x + 1)| \] As \( x \to 2^+ \), \( x - 2 \) is positive, so: \[ |p(x)| = (x - 2)(x + 1) \] Thus, the limit becomes: \[ \lim_{x \to 2^+} \frac{(x - 2)(x + 1)}{\sqrt{2}(x - 2)} = \lim_{x \to 2^+} \frac{x + 1}{\sqrt{2}} \] ### Step 6: Evaluate the limit Now substituting \( x = 2 \): \[ \frac{2 + 1}{\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2} \] ### Final Answer Thus, the final answer is: \[ \frac{3\sqrt{2}}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sqrt((1-cos2x)/(2)))/(x)

lim_(x rarr0)(sqrt(1-cos x^(2)))/(1-cos x)=

lim_(x rarr0)(sqrt(1-cos2x))/(sqrt(2)x)

Find, lim_(x rarr0)(1-sqrt(1-x^(2)))/(x^(2))

lim_(x rarr0)(sqrt(2)-sqrt(1cos x))/(x^(2))

lim_(x rarr0)(sqrt(1-cos2x))/(2x) is equal to =

lim_(x rarr0)(1-cos x sqrt(cos2x))/(x^(2))

lim_(x rarr0)(sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

Evaluate: lim_(x rarr a) (sqrt(x+a)-sqrt(2a))/(x-a) .

lim_(x rarr0)(1-cos x sqrt(cos2x))/((e^(x)^^2-1))