Home
Class 12
MATHS
2^(10)+2^(9) .3^1+.....2.3^9+3^(10)=A-2^...

`2^(10)+2^(9) .3^1+.....2.3^9+3^(10)=A-2^(11)`. Find `A=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2^{10} + 2^{9} \cdot 3^{1} + 2^{8} \cdot 3^{2} + \ldots + 2^{1} \cdot 3^{9} + 3^{10} = A - 2^{11}\), we can follow these steps: ### Step 1: Identify the Series The left-hand side of the equation can be expressed as a sum of terms where each term is of the form \(2^{10-k} \cdot 3^{k}\) for \(k = 0\) to \(10\). Thus, we can rewrite the series as: \[ S = \sum_{k=0}^{10} 2^{10-k} \cdot 3^{k} \] ### Step 2: Factor Out \(2^{10}\) We can factor out \(2^{10}\) from the series: \[ S = 2^{10} \sum_{k=0}^{10} \left(\frac{3}{2}\right)^{k} \] ### Step 3: Recognize the Geometric Series The sum \(\sum_{k=0}^{10} \left(\frac{3}{2}\right)^{k}\) is a geometric series with the first term \(a = 1\) and common ratio \(r = \frac{3}{2}\). The number of terms \(n = 11\). ### Step 4: Use the Formula for the Sum of a Geometric Series The formula for the sum of the first \(n\) terms of a geometric series is: \[ S_n = a \frac{1 - r^n}{1 - r} \] Applying this formula: \[ \sum_{k=0}^{10} \left(\frac{3}{2}\right)^{k} = \frac{1 - \left(\frac{3}{2}\right)^{11}}{1 - \frac{3}{2}} = \frac{1 - \left(\frac{3}{2}\right)^{11}}{-\frac{1}{2}} = -2 \left(1 - \left(\frac{3}{2}\right)^{11}\right) \] ### Step 5: Substitute Back into the Expression for \(S\) Substituting this back into our expression for \(S\): \[ S = 2^{10} \cdot -2 \left(1 - \left(\frac{3}{2}\right)^{11}\right) = -2^{11} \left(1 - \left(\frac{3}{2}\right)^{11}\right) \] ### Step 6: Simplify the Expression Now, we can simplify: \[ S = -2^{11} + 2^{11} \cdot \left(\frac{3}{2}\right)^{11} = -2^{11} + \frac{3^{11}}{2^{11}} \cdot 2^{11} = -2^{11} + 3^{11} \] ### Step 7: Set Equal to \(A - 2^{11}\) From the original equation: \[ -2^{11} + 3^{11} = A - 2^{11} \] Adding \(2^{11}\) to both sides gives: \[ 3^{11} = A \] ### Final Answer Thus, we find that: \[ A = 3^{11} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^(10) + 2^(9) * 3^(1) + 2 ^(8) * 3^(2) + …. + 2 * 3^(9) + 3^(10) = S - 2^(11) , then S is equal to :

If (10)^(9)+2(11)^(1)(10)^(8)+3(11)^(2)(10)^(7)+..........+10(11)^(9)=k(10)^(9), then k is equal to:

If (10)^(9)+2(11)^(1)(10)^(8)+3(11)^(2)(10)^(7)+"........"+(10)(11)^(9)=k(10)^(9) , then k is equal to

Evaluate : 2^(10)C_(0)+(2^(2).^(10)C_(1))/(2)+(2^(3).^(10)C_(2))/(3)+ . . .+(2^(11).^(10)C_(10))/(11)

if 10^(9)+2*11^(1)*10^(8)+3*11^(2)*10^(7)+............+10*11^(9)=k*10^(9) then k equals to:

If (10)^(9)+2(11)^(1)(10)^(8)+3(11)^(2)(10)^(7)+....+10(11)^(9)=k(10)^(9), then k is equal to (1)(121)/(10)(2)(441)/(100) (3) 100(4)110

Sum of the series S = 3^(-1)(""^(10)C_(0))-""^(10)C_(1)+(3)(""^(10)C_(2))-3^(2)(""^(10)C_(3))+…+3^(9)(""^(10)C_(10)) is

Find the sum 2..^(10)C_(0) + (2^(2))/(2).^(10)C_(1) + (2^(3))/(3).^(10)C_(2)+(2^(4))/(4).^(10)C_(3)+"...."+(2^(11))/(11).^(10)C_(10) .

The period of moon around the earth is 27.3 days and radius of the orbit is 3.9 xx 10^(5) km . G=6.67 xx 10^(-11) Nm^(-2)kg^(-2) , find the mass of the earth.