Home
Class 10
MATHS
" The Locus of the point "(a+bt,b-(a)/(t...

" The Locus of the point "(a+bt,b-(a)/(t))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the point (a+bt,b-(a)/(t)) where t is the parameter is

The locus of the point (a+b t, b-(a)/(t)), where t is the parameter is

If t is parameter then the locus of the point P(t,(1)/(2t)) is _

Find the locus of point (a+bt,b-(a)/(t)) where t is a parameter.

Match the following {:(I., "The locus of the point "(at^2, 2at) " is",,(a), xy = c^2),(II., "The locus of the point "(ct, c//t) " is",,(b), y^2 +4x =4),(III., "The locus of the point "(cos^2 t, 2 sin t)" is",,(c), x^2 + y^2 = 2),(IV., "The locus of the point " (cost + sint, cos t - sin t)" is",,(d),y^2 = 4ax):}

Find the locus of point (ct,(c)/(t)) where t is a parameter.

If the locus of the point ((a)/(2)(t+(1)/(t)),(a)/(2)(t-(1)/(t))) represents a conic,then distance between the directrices is

Find the locus of the point (t^2+t+1,t^2-t+1),t in Rdot

The locus of the point x=(t^(2)-1)/(t^(2)+1),y=(2t)/(t^(2)+1)

The locus of the point ( (e^(t) +e^(-t))/( 2),(e^t-e^(-t))/(2)) is a hyperbola of eccentricity