Home
Class 8
MATHS
int(1)^(4)ln[x]dx=...

int_(1)^(4)ln[x]dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

int_1^4 log[x]dx

int_(1)^(e )x^(x)dx+ int_(1)^(e )x^(x)log x dx=

int_(1)^(4) log_(e)[x]dx equals

int_(1)^(4) log_(e)[x]dx equals

int_(1)^(e )((log x)^(4))/(x)dx=

Evaluate int_(5)^(7)ln(x-3)^(2)dx+2int_(0)^(1)ln(x+4)^(2)dx

Let I_(n)= int_(0)^(1)(x ln x)^(n)dx, if I_(4)=k int_(0)^(1)x^(4)(ln x)^(3)dx, then |[k]| is equal to ([.] denotes greatest integer function).

int_(-1)^(1)log[(a-x)/(a+x)]dx

(int_(0)^(1)ln x ln(1-x)dx)/(int_(0)^((1)/(sqrt(2)))x ln x ln(1-x^(2))dx) is equal to