Home
Class 12
MATHS
" (iv) "|[a+ib,c+id],[-c+id,a-ib]|...

" (iv) "|[a+ib,c+id],[-c+id,a-ib]|

Promotional Banner

Similar Questions

Explore conceptually related problems

If |[a+ib,c+id],[-c+id,a-ib]|**|[alpha-ibeta,gamma-idelta],[-gamma-idelta,alpha+ibeta]|= |[A-iB,C-iD],[-C-iD,A+iB]| write down the values of A,B,C,D , hence show that the producrs of sums , each of four squares , can be expressed as the sum of four squares

Evaluate: |{:(" "a+ib,c+id),(-c+id,a-ib):}|

Evaluate det [(a+ib, c +id),(-c+id, a-ib)]

Find the adjoint and inverse of each of the following matrices : A = [(a+ib, c +id),(-c + id,a - ib)] where a^(2) + b^(2) + c^(2) + d^(2) = 1

If A = [(a+ib,c+id),(-c+id,a-ib)], a^(2)+b^(2)+c^(2)+d^(2) =1 , then find inverse of A.

Evaluate |(a+ib,c+id),(-c+id,a-ib)| where i=sqrt(-1)

Evaluate the following determinants: |(a+ib , - c + id),(c+id, a-ib)|

Evaluate det[[a+ib,c+id-c+id,a-ib]]

IF A=[{:(a+ib,c+id),(-c+id,a-ib):}] a^2+b^2+c^2+d^2=1 , then find the inverse of A.

If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1 , then A^(-1) is equal to