Home
Class 11
MATHS
If z = sec^(-1) (x + 1/x) + sec^(-1) (y ...

If z = `sec^(-1) (x + 1/x) + sec^(-1) (y + 1/y)`, where xy< 0, then the possible value of z is (are)

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=sec^(-1)(x+1/x)+sec^(-1)(y+1/y), where x y<0, then the possible values of z is (a) (8pi)/(10) (b) (7pi)/(10) (c) (9pi)/(10) (d) (21pi)/(20)

If z=sec^(-1)(x+1/x)+sec^(-1)(y+1/y), where x y<0, then the possible values of z is (are) (8pi)/(10) (b) (7pi)/(10) (c) (9pi)/(10) (d) (21pi)/(20)

If z=sec^(-1)(x+1/x)+sec^(-1)(y+1/y), where x y<0, then the possible values of z is (are) (8pi)/(10) (b) (7pi)/(10) (c) (9pi)/(10) (d) (21pi)/(20)

If y = sec^(-1) (1/(sqrt(1-x^(2)))) + sec^(_1) (1/(1-2x^(2))) then dy/dx =

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)) , then (dy)/(dx) is

1-(dy)/(dx)=sec(x-y)," where "x-y=u

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to