Home
Class 11
MATHS
[A=[[i,-i],[-i,i]],B=[[1,-1],[-1,1]]" an...

[A=[[i,-i],[-i,i]],B=[[1,-1],[-1,1]]" and if "A^(4)=alpha B,alpha in R],[" then "alpha=]

Promotional Banner

Similar Questions

Explore conceptually related problems

" If "A=[[i,-i],[-i,i]],B=[[1,-1],[-1,1]]" and if "A^8=alpha B,alpha in R" then the numerical value of "(alpha)/(32)" is "

If A= [[i,-i],[-i,i]] B= [[1,-1],[-1,1]] and if A^(2)=alpha B , alpha in R^(*) then the numerical value of (alpha)/(32) is

If A=[[2,4],[3,13]]"and I"=[[1,0],[0,1]]"find" A-alpha I,alpha in R.

If A=[[2,3],[1,4]] and if (A+I)^(-1)=alpha A+beta I then (alpha,beta)= ? (where I is identity matrix and alpha,beta in R

If S={(alpha+i)/(alpha-i),alpha in R} then the S lies on

If (a+i b)^(5)=alpha+i beta then (b+i a)^(5)=

Let A= [(1,2),(-1,4)] . If A^(-1)= alpha I +beta A, alpha, beta in R , I is a 2 xx 2 identity matrix, then 4(alpha-beta) is equal to

if [ ( cos alpha, - sin alpha),(sin alpha, cos alpha)] and A +A^1 =I then alpha =……