Home
Class 10
MATHS
" The value of "(1)/(log(2)n)+(1)/(log(3...

" The value of "(1)/(log_(2)n)+(1)/(log_(3)n)+......+(1)/(log_(43)n)

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (1)/(log_(2)n)+(1)/(log_(3)n)+ . . .+(1)/(log_(40)n) ?

The value of (1)/(log_(3)n)+(1)/(log_(4)n) + (1)/(log_(5)n) + ... + (1)/(log_(8)n) is ______.

If n>1 then prove that (1)/(log_(2)n)+(1)/(log_(3)n)+............+((1)/(log_(53)n)=(1)/(log_(53!)n)

If n>1, then prove that(1)/(log_(2)n)+(1)/(log_(3)n)+...+(1)/(log_(53)n)=(1)/(log_(53)n)

( The value of )/(log_(2)N)+(1)/(log_(4)N)+...+(1)/(log_(1988)N) is ;(N>0 and N!=0)( i) (1)/(log_(1998)((1)/(N)))( ii) log_(N)(1998!) (iii) log _(N)1998 (iv) none of these

In n = 10!, then what is the value of the following? (1)/(log_(2)n) +(1)/(log_(3)n) +(1)/(log_(4)n)+…..+ (1)/(log_(10)n)

Let n=75600 ,then find the value of (4)/(log_(2)n)+(3)/(log_(3)n)+(2)/(log_(5)n)+(1)/(log_(7)n)