Home
Class 12
MATHS
[" 28.By using properties of determinant...

[" 28.By using properties of determinants,show that "],[[" (i) ",[x+4,2x],[2x,x+4,2x],[2x,2x,x+4]]]

Promotional Banner

Similar Questions

Explore conceptually related problems

By using properties of determinants, show that : |[x+4,2x,2x],[2x,x+4,2x],[2x,2x,x+4]| = (5x+4)(4-x)^2

By using properties of determinants , show that : (i) {:[( x+4, 2x, 2x),( 2x,x+4, 2x),( 2x,2x, x+4) ]:}=( 5x +4) (4-x)^(2) ( ii) {:[( y+k , y , y ),( y,y+ k , y ),( y,y , y+k ) ]:} =k^(2) ( 3y +k )

By using properties of determinants , show that : (i) {:|( x+4, 2x, 2x),( 2x,x+4, 2x),( 2x,2x, x+4) |:}=( 5x +4) (4-x)^(2) ( ii) {:|( y+k , y , y ),( y,y+ k , y ),( y,y , y+k ) |:} =k^(2) ( 3y +k )

By using properties of determinants, prove that |[x+4,2x,2x],[2x,x+4,2x],[2x,2x,x+4]|=(5x+4)(4-x)^2

By using properties of determinants. Show that: |[1,x,x^2],[x^2, 1,x],[x,x^2, 1]|=(1-x^3)^2

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=y^2(3y+k)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)

By using properties of determinants. Show that: (i) |(x+4,2x,2x),(2x,x+4,2x),(2x,2x,x+4)|=(5x-4)(4-x)^2 (ii) |(y+k,y,y),(y,y+k,y),(y,y,y+k)|=k^2(3y+k)