Home
Class 11
MATHS
sumsum(0leqiltjleqn) (i+j)(C(n,i)+C(n,j)...

`sumsum_(0leqiltjleqn) (i+j)(C(n,i)+C(n,j))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(0<=i

sum_(0<=i

sum_(0<=i

The value of (sumsum)_(0leilejlen) (""^(n)C_(i) + ""^(n)C_(j)) is equal to

The value of sum sum_(0<=i<=j<=n)(sim nC_(i)+^(n)C_(j)) is equal to

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then sumsum_(0lerltslen)(r+s)C_(r)C_(s) is equal to :

Find the value of (sumsum)_(0leiltjlen) (i+j)(""^(n)C_(i)+""^(n)C_(j)) .

If (1 + x)^(n) = sum_(r=0)^(n) C_(r),x^(r) , then prove that (sumsum)_(0leiltjlen) ((i)/(C_(i)) + (j)/(C_(j))) = (n^(2))/(2) sum_(r=0)^(n) (1)/(C_(r)) .

If (1 + x)^(n) = sum_(r=0)^(n) C_(r),x^(r) , then prove that (sumsum)_(0leiltjlen) ((i)/(C_(i)) + (j)/(C_(j))) = (n^(2))/(2) sum_(r=0)^(n) (1)/(C_(r)) .