Home
Class 12
MATHS
If vec a , vec ba n d vec c are three n...

If ` vec a , vec ba n d vec c` are three non-zero non-coplanar vectors, then find the linear relation between the following four vectors: ` vec a-2 vec b+3 vec c ,2 vec a-3 vec b+4 vec c ,3 vec a-4 vec b+5 vec c ,7 vec a-11 vec b+15 vec cdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a,vec b and vec c are three non-zero non-coplanar vetors,then find the linear relation between the following four vectors: vec a-2vec b+3vec c,2vec a-3vec b+4vec c,3vec a-4vec b+5vec c,7vec a-11vec b+15vec c

If a ,\ b ,\ c are non zero non coplanar vectors, prove that the following vectors are coplanar. 5 vec a+6 vec b+7 vec c ,\ 7 vec a-8 vec b+9 vec c\ a n d\ 3 vec a+20 vec b+5 vec c

If vec a ,\ vec b ,\ vec c are non coplanar vectors, prove that the following vectors are non coplanar: \ vec a+2 vec b+3 vec c ,\ 2 vec a+ vec b+3 vec c\ a n d\ vec a+ vec b+ vec c

Show that the vectors vec a-2 vec b+3 vec c , vec a-3 vec b+5 vec ca n d-2 vec a+3 vec b-4 vec c are coplanar, where vec a , vec b , vec c are non-coplanar.

If vec a,vec b, and vec c are non-zero vectors such that vec a.vec b=vec a*vec c, then find the geometrical relation between the vectors.

Let vec a , vec ba n d vec c , be non-zero non-coplanar vectors. Prove that: vec a-2 vec b+3 vec c ,-2 vec a+3 vec b-4 vec ca n d vec c-3 vec b+5 vec c are coplanar vectors. 2 vec a- vec b+3 vec c , vec a+ vec b-2 vec ca n d vec a+ vec b-3 vec c are non-coplanar vectors.

If vec a ,\ vec b ,\ vec c are non coplanar vectors, prove that the following vectors are non coplanar: \ 2 vec a- vec b+3 vec c ,\ vec a+ vec b-2 vec c\ a n d\ vec a+ vec b-3 vec c

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec b and vec c are three non-zero, non coplanar vector vec b_1= vec b-( vec bdot vec a)/(| vec a|^2) vec a , vec c_1= vec c-( vec cdot vec a)/(| vec a|^2) vec a+( vec bdot vec c)/(| vec c|^2) vec b_1 , , c_2= vec c-( vec cdot vec a)/(| vec a|^2) vec a-( vec bdot vec c)/(| vec b_1|^2) , b_1, vec c_3= vec c-( vec cdot vec a)/(| vec c|^2) vec a+( vec bdot vec c)/(| vec c|^2) vec b_1 , vec c_4= vec c-( vec cdot vec a)/(| vec c|^2) vec a=( vec bdot vec c)/(| vec b|^2) vec b_1 then the set of orthogonal vectors is ( vec a , vec b_1, vec c_3) b. ( vec a , vec b_1, vec c_2) c. ( vec a , vec b_1, vec c_1) d. ( vec a , vec b_2, vec c_2)