Home
Class 11
MATHS
1/(log2x)+1/(log3x)+......1/(log43 x)=1/...

`1/(log_2x)+1/(log_3x)+......1/(log_43 x)=1/(log_43! x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(log_(2)x)+(1)/(log_(3)x)+......(1)/(log_(43)x)=(1)/(log_(43)!x)

If n in N, prove that 1/(log_2x)+1/(log_3x)+1/(log_4x)++(1)/(log_n x)=1/(log_(n !)x)

Show that: 1/(log_2n)+1/(log_3n)+1/(log_4n)+…+1/(log_43n)=1/(log_(43!)n)

Show that: (1)/(log_(2)n)+(1)/(log_(3)n)+(1)/(log_(4)n)+...+(1)/(log_(43)n)=(1)/(log_(43!)n)

IF x=198! then value of the expression 1/(log_2x)+1/(log_3x)+...+1/(log_198 x) equals

(1)/(x log x log (log x ))

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

(1)/(log_(2)(n))+(1)/(log_(3)(n))+(1)/(log_(4)(n))+....+(1)/(log_(43)(n))

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x1) [log_(x2) {log_(x3).........log_(x4) (x_n)^(x_(r=i))}]