Home
Class 10
MATHS
If / B and / Q are acute angles such tha...

If `/_ B` and `/_ Q` are acute angles such that `sin B=sin Q.` Then prove that `/_ B=/_ Q.`

Text Solution

Verified by Experts

`SinB=(AC)/(AB), Sintheta=(PR)/(PQ)`
`(AC)/(AB)=(PR)/(PQ)`
`(AC)/(PR)=(AB)/(PQ)=K=(BC)/(QR)`
`AB^2=AC^2+BC^2`
`K^2PQ^2=K^2PR^2+BC^2`
`BC=sqrt(K^2(PQ^2-PR^2))`
`BC=Ksqrt(PQ^2-PR^2)`
`BC=QRK`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If A and B are acute angles such that sin A =cos B , prove that (A+B)=90^@ .

If A and B are acute angles such that sinA=sin^(2)B,2cos^(2)A=3cos^(2)B then B equal to

If A and B are positive acute angles such that sin (A - B) =1/2 and cos (A + B) = 1/2 , then A and B are given by

Let AandB be acute angles such that sin A=sin^(2)B and 2cos^(2)A=3cos^(2)B. Then A equal to

If A and B are acute angles and (sin A)/(sin B)=sqrt(2) and (tan A)/(tan B)=sqrt(3), find A and B

If B,A+B are acute angles sin(A+B)=(12)/(13),sin B=(5)/(13) then sin A=

In A B C and P Q R Figure, A B=P Q ,B C=Q R and C B and R Q are extended to X and Y respectively and /_A B X =/_P Q Ydot Prove that A B C~=P Q Rdot Figure

If sin A= cos B , where A and B are acute angles, then A+B =__________

If A and B are acute positive angles satisfying the equations 3 "sin"^(2) A + 2"sin"^(2)B =1 " and " 3"sin"2A-2 "sin" 2B = 0, "then " A +2B =