Home
Class 11
MATHS
If cot^2x=cot(x-y)cot(x-z),t h e ncot2x ...

If `cot^2x=cot(x-y)cot(x-z),t h e ncot2x` is equal to `(w h e r ex!=pi/4)` . (a)`1/2(tany+tanz)` (b) `1/2(coty+cotz)` `1/2(siny+sinz)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If cot^2x=cot(x-y)(x-z),t h e ncot2x is equal to (w h e r ex!=pi/4)

If cot^2x=cot(x-y)(x-z),t h e ncot2x is equal to (w h e r ex!=pi/4) . 1/2(tany+tanz) (b) 1/2(coty+cotz) 1/2(siny+sinz) (d) none of these

If cot^(2)x =cot(x-y) cot(x-z) , then cot(2x) is equal to (where x ne +-pi/4 )

If cot^(2)x=cot(x-y)*cot(x-z) , then cot2x is equal to (x!= pm pi/4)

If cot^(2)x=cot(x-y)*cot(x-z) , then cot2x is equal to (x!= pm pi/4)

If cot^(2)x=cot(x-y)*cot(x-z) , then cot2x is equal to (x!= pm pi/4)

If cot^(2)x=cot(x-y)*cot(x-z) , then cot2x is equal to (x!= pm pi/4)

If cot^(2)x=cot(x-y)*cot(x-z) , then cot2x is equal to (x!= pm pi/4)

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=