Home
Class 12
MATHS
Show that the vectors 2veca-vecb+3vecc, ...

Show that the vectors `2veca-vecb+3vecc, veca+vecb-2vecc and veca+vecb-3vecc` are non-coplanar vectors (where `veca, vecb, vecc` are non-coplanar vectors).

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the vectors veca-2vecb+3vecc,-2veca+3vecb-4vecc and - vecb+2vecc are coplanar vector where veca, vecb, vecc are non coplanar vectors

Show that the vectors veca-2vecb+3vecc,-2veca+3vecb-4vecc and - vecb+2vecc are coplanar vector where veca, vecb, vecc are non coplanar vectors

Prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc,3veca+4vecb-2vecc and veca-6vecb+6vecc are coplanar where veca,vecb,vecc are non-coplanar vectors

For any three vectors veca,vecb,vecc show that veca-vecb,vecb-vecc,vecc-veca are coplanar.

For any three vectors veca,vecb,vecc show that (veca-vecb),(vecb-vecc) (vecc-veca) are coplanar.

Prove that [vecaxxvecb, vecbxxvecc, veccxxveca] = [[veca.veca, veca.vecb, veca.vecc], [veca.vecb,vecb.vecb, vecb.vecc], [veca.vecc, vecb.vecc,vecc.vecc]] = [veca, vecb, vecc]^2,Hence show that vectors vecaxxvecb, vecbxxvecc, veccxxveca are non-coplanar if and only if vectors veca, vecb, vecc are non-coplanar

If veca, vecb, vecc are three non-coplanar vectors, then [veca+ vecb + vecc veca - vecc veca-vecb] is equal to :

The position vector of three points are 2veca-vecb+3vecc , veca-2vecb+lambdavecc and muveca-5vecb where veca,vecb,vecc are non coplanar vectors. The points are collinear when

The position vector of three points are 2veca-vecb+3vecc , veca-2vecb+lambdavecc and muveca-5vecb where veca,vecb,vecc are non coplanar vectors. The points are collinear when