Home
Class 10
MATHS
In a right triangle ABC right-angled at ...

In a right triangle ABC right-angled at B. if `t a n A=1`, then value of `2sinA cos A=.`

A

`0`

B

`1`

C

`2`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(2 \sin A \cos A\) given that \(\tan A = 1\) in a right triangle ABC, where angle B is the right angle. ### Step-by-Step Solution: 1. **Understanding the Given Information**: Since \(\tan A = 1\), we know that: \[ \tan A = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{BC}{AB} \] This implies that \(BC = AB\) because \(\tan A = 1\). 2. **Assigning Lengths**: Let's assign lengths to the sides: - Let \(AB = k\) (the length of the adjacent side) - Let \(BC = k\) (the length of the opposite side) Thus, both sides are equal. 3. **Finding the Hypotenuse**: Using the Pythagorean theorem, we can find the hypotenuse \(AC\): \[ AC = \sqrt{AB^2 + BC^2} = \sqrt{k^2 + k^2} = \sqrt{2k^2} = k\sqrt{2} \] 4. **Calculating \(\sin A\) and \(\cos A\)**: Now, we can find \(\sin A\) and \(\cos A\): - \(\sin A = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{BC}{AC} = \frac{k}{k\sqrt{2}} = \frac{1}{\sqrt{2}}\) - \(\cos A = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{AB}{AC} = \frac{k}{k\sqrt{2}} = \frac{1}{\sqrt{2}}\) 5. **Calculating \(2 \sin A \cos A\)**: Now, we substitute \(\sin A\) and \(\cos A\) into the expression \(2 \sin A \cos A\): \[ 2 \sin A \cos A = 2 \left(\frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}}\right) = 2 \cdot \frac{1}{2} = 1 \] ### Conclusion: Thus, we have shown that: \[ 2 \sin A \cos A = 1 \]

To solve the problem, we need to find the value of \(2 \sin A \cos A\) given that \(\tan A = 1\) in a right triangle ABC, where angle B is the right angle. ### Step-by-Step Solution: 1. **Understanding the Given Information**: Since \(\tan A = 1\), we know that: \[ \tan A = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{BC}{AB} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

In a right triangle ABC, right angled at C, if tan A=1, then verify that 2sin A cos A=1

In a triangle ABC,right angled at B, then

In triangle ABC, right-angled at B. if tan A = 1/sqrt(3) ,find the value of: sin A cos C+cos A sin C

In triangle ABC , right angled at B, if tanA =1/2 , then the value of (sinA(cosC + cosA))/(cosC(sinC - sinA)) is: triangle ABC में B एक समकोण है यदि tanA =1/2 तो (sinA(cosC + cosA)) /(cosC(sinC - sinA)) का मान क्या होगा ?

In a triangle ABC,k right angled at B, if tan A = (1)/(sqrt3). Find the value of cos A.cosC-sinA.sinC.

if in triangle ABC right angled at C then tan A+tan B

If triangle ABC is right angled at C, then the value of sec (A+B) is

In a right -angled triangle ABC, right-angled at B, if AB=2sqrt6 and AC-BC=2 , then find sec A+ tan A .

If in right angled triange ABC,angle B is right angle and tan A=1, then the value 2sin A cos A will be

In a Delta ABC right angled at C, if tan A=(1)/(sqrt(3)), find the value of sin A cos B+cos A sin B