Home
Class 12
MATHS
(dy)/(dx)-e^(x)=ye^(x), when x=0, y=1...

`(dy)/(dx)-e^(x)=ye^(x)`, when `x=0, y=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=2e^(x)y^(3) , when x=0, y=(1)/(2)

(dy)/(dx) -y =e^(x ) " when" x=0 and y=1

(1+e^(x))/(y)(dy)/(dx)=e^(x), when y=1, x=0

(x-y)(1-(dy)/(dx))=e^(x)

(dy)/(dx)=y tan x , y=1 when x=0

Given that (dy)/(dx)=ye^x and y=e when x=0. find y when x=1

The solution of the differential equation (1+e^(x))y(dy)/(dx) = e^(x) when y=1 and x = 0 is

Solve the differential equation: e^(x//y)(1-(x)/(y))+(1+e^(x//y)) (dx)/(dy)=0 when x=0, y=1