Home
Class 11
MATHS
11. Which of the following pairs are equ...

11. Which of the following pairs are equal functions? 1. `f(x)=log_e x^2,x>0,g(x)=2log_2 x,x>0` 2.`f(x)=1/x^2,x!=0,g(x)=1/(|x|^2)`,x!=0 3.`f(x)=x^2/x,g(x)=x` 4.`f(x)=|x|,g(x)=x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Find f0g and g0f : f(x)=x^2+2 , g(x)=1-1/(1-x)

Let f(x)={x+1,x >0 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

f(x)={x-1,-1<=x<=0 and x^(2),0<=x<=1 and g(x)=sin x Find h(x)=f(|g(x)|)+|f(g(x))|.

Let f(x)={x-1,-1<=x<0 and x^(2),0<=x<=1,g(x)=sin x and h(x)=f(|g(x)|)+[f(g(x)) Then

f(x) and g(x) are two differentiable functions in [0,2] such that f(x)=g(x)=0,f'(1)=2,g'(1)=4,f(2)=3,g(2)=9 then f(x)-g(x) at x=(3)/(2) is

f(x) and g(x) are two differentiable functions in [0,2] such that f(x)=g(x)=0,f'(1)=2,g'(1)=4,f(2)=3,g(2)=9 then f(x)-g(x) at x=(3)/(2) is

Suppose that the function f,g,f', and g' are continuous over [0,1],g(x)!=0 for x in[0,1],f(0)=0,g(0)=pi,f(1)=(2015)/(2),g(1)=1 The value of int_(0)^(1)(f(x)g'(x)(g^(2)(x)-1)+f'(x)-g(x)(g^(2)(x)+1))/(g^(2)(x))dx is equal to

f(x)=e^x.g(x) , g(0)=2 and g'(0)=1 then f'(0)=