Home
Class 12
MATHS
If y=(x+sqrt(1+x^2))^n , then show that ...

If `y=(x+sqrt(1+x^2))^n` , then show that `(1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)=n^2ydot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(x+sqrt(1+x^(2)))^(n), then show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=n^(2)y

If y=(x+sqrt(1+x^(2)))^(n) , then show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=n^(2)y .

If y=log(x+sqrt(1+x^(2))), then show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y={log(x+sqrt(x^2+1))}^2 , show that (1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)=2 .

If y=(sin^(-1) x)/(sqrt(1-x^2)) , then show that (1-x^2)(d^2y)/(dx^2)-3x(dy)/(dx)-y=0 .

If y={"log"(x+sqrt(x^2+1))}^2,"show that"(1+x^2)(d^2y)/(dx^2)+x(dy)/(dx)=2.

If y=(x+sqrt(x^(2)-1))^(m) , show that (x^(2)-1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=m^(2)y

If y={x +sqrt(x^(2)+1)}^(m) , then show that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)-m^(2)y=0.

If y= ( sin^(-1) x)^(2) , show that (1-x^(2) ) (d^2 y)/( dx^2) - x (dy)/(dx) =2