Home
Class 12
MATHS
Let alpha,beta(alpha < beta) be the root...

Let `alpha,beta(alpha < beta)` be the roots of the equation `ax^2+bx+c=0.` If `lim_(x->oo)(|ax^2+bx+c|)/(ax^2+bx+c)=1` then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha , beta (a lt b) be the roots of the equation ax^(2)+bx+c=0 . If lim_(xtoalpha ) (|ax^(2)+bx+c|)/(ax^(2)+bx+c)=1 then

Let alpha and beta be the roots of ax^2 + bx +c =0 , then underset(x to alpha)(lim) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2)) is equal to :

If alpha , beta are the roots of ax^2 + bx + c=0 then alpha beta ^(2) + alpha ^2 beta + alpha beta =

IF alpha , beta are the roots of ax ^2 + bx + c=0 then (alpha ^2 + beta ^2)/(alpha ^(-2)+ beta ^(-2))=

IF alpha , beta are the roots of ax ^2 + bx +c=0 then (alpha ^2)/( beta ) +( beta ^2)/( alpha )

IF alpha , beta are the roots of ax^2 + bx +c=0 then the equation roots are alpha // beta , beta // alpha is

IF alpha , beta are the roots of ax ^2 + bx +c=0 then ((alpha )/( a beta + b) )^(3) - ( ( beta )/( a alpha + b )) ^(3)=

If alpha , beta are the roots of ax ^2 + bx +c=0 then alpha ^5 beta ^8 + alpha beta ^5=