Home
Class 12
MATHS
Let x1=1 and x(n+1)=(4+3xn)/(3+2xn) for ...

Let `x_1=1 and x_(n+1)=(4+3x_n)/(3+2x_n)` for `n >= 1.` If `lim_(x->oo)x_n` exists finitely, then the limit is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let x_(1)=1 and x_(n+1)=(4+3x_(n))/(3+2x_(n)) for n>=1 If lim_(x rarr oo)x_(n) exists finitely,then the limit is equal to

If x_1=sqrt(3) and x_(n+1)=(x_n)/(1+sqrt(1+x_ n^2)),AA n in N then lim_(n->oo)2^n x_n is equal to

If x_1=sqrt(3) and x_(n+1)=(x_n)/(1+sqrt(1+x_ n^2)),AA n in N then lim_(n->oo)2^n x_n is equal to

If x_1=3 and x_ +1= sqrt(2+x_n), n ge 1 , then lim_(nto oo) x_n is equal to

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n)),n<=1, then lim_(n rarr oo)x_(n) is

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n))" ",nge1, then lim_(ntooo) x_(n) is

If x_(1)=3 and x_(n+1)=sqrt(2+x_(n))" ",nge1, then lim_(ntooo) x_(n) is

lim_(x->oo)(1-x+x.e^(1/n))^n

If quad sqrt(3) and x_(n+1)=(x_(n))/(1+sqrt(1+x_(n)^(2))),AA n in N then lim_(n rarr oo)2^(n)x_(n) is equal to ,AA n in N

If f(x)=lim_(n->oo)[2x+4x^3+6x^5++2n x^(2n-1)] (0ltxlt1) then int f(x)dx is equal to: