Home
Class 12
MATHS
If an a n dbn are positive integers and ...

If `a_n a n db_n` are positive integers and `a_n+sqrt(2b_n)=(2+sqrt(2))^n ,t h e n(lim)_(xvecoo)((a_n)/(b_n))=` a. 2 b. `sqrt(2)` c. `e^(sqrt(2))` d. `e^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_n and b_n are positive integers and a_n+sqrt(2)b_n=(2+sqrt(2))^n ,t h e n(lim)_(n->oo)((a_n)/(b_n))= a. 2 b. sqrt(2) c. e^(sqrt(2)) d. e^2

If a_n and b_n are positive integers and a_n+sqrt(2)b_n=(2+sqrt(2))^n ,t h e n(lim)_(x->oo)((a_n)/(b_n))= a. 2 b. sqrt(2) c. e^(sqrt(2)) d. e^2

If a_(n) and b_(n) are positive integers and a_(n)+sqrt(2b_(n))=(2+sqrt(2))^(n), then lim_(x rarr oo)((a_(n))/(b_(n)))= a.2 b.sqrt(2)c.e^(sqrt(2))d.e^(2)

If a_(n) and b_(n) are positive integers and a_(n)+sqrt2b_(n)=(2+sqrt2))^(n) , then lim_(nrarroo) ((a_(n))/(b_(n))) =

If a_(n) and b_(n) are positive integers and a_(n)+sqrt2b_(n)=(2+sqrt2))^(n) , then lim_(nrarroo) ((a_(n))/(b_(n))) =

If a_(n) and b_(n) are positive integers and a_(n)+sqrt2b_(n)=(2+sqrt2)^(n) , then lim_(nrarroo) ((a_(n))/(b_(n))) =

If x_1=3 and x_(n+1)=sqrt(2+x_n),ngeq1,t h e n""("lim")_(xrarroo)x_n is (a) -1 (b) 2 (c) sqrt(5) (d) 3

If x_1=3 and x_(n+1)=sqrt(2+x_n),ngeq1,t h e n""("lim")_(xrarroo)x_n is (a) -1 (b) 2 (c) sqrt(5) (d) 3

If x_1=3 and x_(n+1)=sqrt(2+x_n),ngeq1,t h e n""("lim")_(xrarroo)x_n is (a) -1 (b) 2 (c) sqrt(5) (d) 3

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]