Home
Class 11
MATHS
The value of tan 203^0 + tan 22^0 + tan ...

The value of `tan 203^0 + tan 22^0 + tan 203^0 tan 22^0` is (A)-1 (B) 0 (C) 1 (D) 2

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan203^(@)+tan22^(0)+tan203^(0)tan22^(0) is (A)-1 (B) 0(C)1(D)2

tan 203^(@) + tan 22^(@) + tan 203^(@) tan 22^(@) =

The value of (tan7 0^0-tan2 0^0)/(tan5 0^0)=

Prove tan 20^0 tan 30^0 tan 40^0 tan 80^0=1

The value of (tan70^(0)-tan20^(0))/(tan50^(0)) =

tan203^(@)+tan22^(@)+tan203^(@)tan22^(@)=

The value of tan (1^(0))+tan(89^(@)) is

(tan 23^(@) + tan 22^(@))/(1- tan23^(@) * tan 22^(@))=

The value of tan6^0tan42^0tan66^0tan78^0 is (a)1 (b) 1/2 (c) 1/4 (d) 1/8