Home
Class 12
MATHS
Prove that: tan^(-1)((1-x^2)/(2x))+cot...

Prove that: `tan^(-1)((1-x^2)/(2x))+cot^(-1)((1-x^2)/(2x))=pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((2x)/(1-x^2))+cot^(-1)((1-x^2)/(2x))=pi/3

Solve : tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(pi)/(3),xgt0

tan^(-1)((2x)/(x^(2)-1))+cot^(-1)((x^(2)-1)/(2x))=-(4 pi)/(3)

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Solve the following equations tan^(-1)""(2x)/(1-x^(2))+cot^(-1)""(1-x^(2))/(2x)=(pi)/(3)

Prove that: tan^(-1)x+tan^(-1)(1/x)=pi/2

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((1+x^2)/(2+x^2) .

If tan^(-1)((x-1)/(x-2))+cot^(-1)((x+2)/(x+1))=(pi)/(4) , find x.