Home
Class 12
MATHS
If sinA=sin^2B and 2cos^2A=3cos^2B then ...

If `sinA=sin^2B and 2cos^2A=3cos^2B` then the triangle ABC is

Promotional Banner

Similar Questions

Explore conceptually related problems

If sinA=sin^2Band2cos^2A=3cos^2B then the triangle ABC is right angled (b) obtuse angled (c)isosceles (d) equilateral

If sinA=sin^2Ba n d2cos^2A=3cos^2B then the triangle A B C is right angled (b) obtuse angled (c)isosceles (d) equilateral

If sinA=sin^2Ba n d2cos^2A=3cos^2B then the triangle A B C is right angled (b) obtuse angled (c)isosceles (d) equilateral

If sinA=sin^2Ba n d2cos^2A=3cos^2B then the triangle A B C is right angled (b) obtuse angled (c)isosceles (d) equilateral

If sin A= sin^2 B and 2 cos^2 A=3 cos^2 B , then the Delta ABC is

If a triangle ABC, sin A = sin^(2) B and 2 cos^(2)A = 3 cos^(2)B , then the Delta ABC is :

If A and B are acute angles such that sinA=sin^(2)B,2cos^(2)A=3cos^(2)B then B equal to

If A and B are acute angles satisfying SinA = Sin^(2) B and 2Cos^(2) A= 3Cos^(2) B then A + B =