Home
Class 12
MATHS
If |z|= "max"{|z-2|,|z+2|}, then...

If `|z|= "max"{|z-2|,|z+2|}`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z|=max{|z-21,|z+2|]}, then locus of z is

I f|z|=max{|z-1|,|z+1|} , then

If|z|=max{|z-1|,|z+1|}, then

If abs(z) = max{abs(z-2),abs(z+2)} , then

If |z_1|=1a n d|z_2|=2,t h e n Max (|2z_1-1+z_2|)=4 Min (|z_1-z_2|)=1 |z_2+1/(z_1)|lt=3 Min (|z_1=z_2|)=2

Let z_(1),z_(2) and z_(3) be complex numbers such that |z_(1)|=|z_(2)|=|z_(3)|=1 then prove that |z_(1)+z_(2)+z_(3)|=|z_(1)z_(2)+z_(2)z_(3)+z_(3)z_(1)|

If |2z-1|=|z-2| and z_1, z_2, z_3 are complex numbrs such that |z_1-alpha|ltalpha, |z_2-beta|ltbeta. Then (z_1+z_2)/(alpha+beta)|= (A) lt|z| (B) lt2|z| (C) gt|z| (D) gt2|z|

If |z_(1)|=15adn|z_(2)-3-4i|=5, then a.(|z_(1)-z_(2)|)_(min)=5b*(|z_(1)-z_(2)|)_(min)=10c(|z_(1)-z_(2)|)_(max)=20d.(|z_(1)-z_(2)|)_(max)=25

If |z_(1)|=1,|z_(2)|=2,|z_(3)|=3 ,then |z_(1)+z_(2)+z_(3)|^(2)+|-z_(1)+z_(2)+z_(3)|^(2)+|z_(1)-z_(2)+z_(3)|^(2)+|z_(1)+z_(2)-z_(3)|^(2) is equal to