Home
Class 12
MATHS
If [(vecaxxvecb, vecbxxvecc, veccxxveca)...

If `[(vecaxxvecb, vecbxxvecc, veccxxveca)]=lamda[(veca, vecb, vecc)]^(2)`, then `lamda` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If [vecaxx vecb vecb xx vecc vecc xx veca] = lamda [veca vecb vecc]^(2), then lamda is equal to :

If [vecaxxvecb vecbxxvecc veccxxveca]=lambda[veca vecb vecc]^2 , then lambda is equal to :

Prove that [vecaxxvecb,vecbxxvecc,veccxxveca]=[veca,vecb,vecc]^(2)

Prove that [vecaxxvecb,vecbxxvecc,veccxxveca]=[veca,vecb,vecc]^(2) .

Prove that: [vecaxxvecb ,vecbxxvecc ,veccxxveca] = [veca vecb vecc]^2

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=(1)/(3) , then x+y+z is equal to

If vecr=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) and [veca vecb vecc]=(1)/(3) , then x+y+z is equal to

If [(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vecd)] , then lamda+mu=

If [(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vecd)] , then lamda+mu=

Let veca,vecb, vecc be any three vectors, Statement 1: [(veca+vecb, vecb+vecc,vecc+veca)]=2[(veca, vecb, vecc)] Statement 2: [(vecaxxvecb, vecbxxvecc, veccxxveca)]=[(veca, vecb, vecc)]^(2)