Home
Class 12
MATHS
If alpha,beta are roots of equation 7x^2...

If `alpha,beta` are roots of equation `7x^2-3x+2=0` then findthe value of `alpha/(1-alpha^2)+beta/(1-beta^2)`

A

`7/24`

B

`5/24`

C

`24/5`

D

`24/7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{\alpha}{1 - \alpha^2} + \frac{\beta}{1 - \beta^2}\), where \(\alpha\) and \(\beta\) are the roots of the equation \(7x^2 - 3x + 2 = 0\). ### Step 1: Find the roots \(\alpha\) and \(\beta\) Using Vieta's formulas, we know: - \(\alpha + \beta = -\frac{b}{a} = \frac{3}{7}\) - \(\alpha \beta = \frac{c}{a} = \frac{2}{7}\) ### Step 2: Rewrite the expression We want to find: \[ \frac{\alpha}{1 - \alpha^2} + \frac{\beta}{1 - \beta^2} \] We can rewrite this as: \[ \frac{\alpha(1 - \beta^2) + \beta(1 - \alpha^2)}{(1 - \alpha^2)(1 - \beta^2)} \] This simplifies to: \[ \frac{\alpha + \beta - \alpha \beta^2 - \beta \alpha^2}{(1 - \alpha^2)(1 - \beta^2)} \] ### Step 3: Substitute known values Substituting \(\alpha + \beta\) and \(\alpha \beta\): \[ \frac{\frac{3}{7} - \alpha \beta(\alpha + \beta)}{(1 - \alpha^2)(1 - \beta^2)} \] Since \(\alpha \beta = \frac{2}{7}\) and \(\alpha + \beta = \frac{3}{7}\), we have: \[ \frac{\frac{3}{7} - \frac{2}{7} \cdot \frac{3}{7}}{(1 - \alpha^2)(1 - \beta^2)} \] Calculating the numerator: \[ \frac{3}{7} - \frac{6}{49} = \frac{21}{49} - \frac{6}{49} = \frac{15}{49} \] ### Step 4: Calculate the denominator Now, we need to calculate \((1 - \alpha^2)(1 - \beta^2)\): \[ (1 - \alpha^2)(1 - \beta^2) = 1 - (\alpha^2 + \beta^2) + \alpha^2 \beta^2 \] We know: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha \beta = \left(\frac{3}{7}\right)^2 - 2\left(\frac{2}{7}\right) = \frac{9}{49} - \frac{4}{7} = \frac{9}{49} - \frac{28}{49} = -\frac{19}{49} \] And: \[ \alpha^2 \beta^2 = (\alpha \beta)^2 = \left(\frac{2}{7}\right)^2 = \frac{4}{49} \] Thus: \[ (1 - \alpha^2)(1 - \beta^2) = 1 - \left(-\frac{19}{49}\right) + \frac{4}{49} = 1 + \frac{19}{49} + \frac{4}{49} = 1 + \frac{23}{49} = \frac{49}{49} + \frac{23}{49} = \frac{72}{49} \] ### Step 5: Combine results Now we can combine the results: \[ \frac{\frac{15}{49}}{\frac{72}{49}} = \frac{15}{72} = \frac{5}{24} \] ### Final Answer Thus, the value of \(\frac{\alpha}{1 - \alpha^2} + \frac{\beta}{1 - \beta^2}\) is \(\frac{5}{24}\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are roots of the equation x^(2)-px+q=0, then find the value of (i)alpha^(2)(alpha^(2)beta^(-1)-beta)+beta^(2)(beta^(2)alpha^(-1)-alpha)

If alpha and beta are the roots of equation 2x^(2)-3x+5=0 then find the value of alpha^(2)beta+beta^(2)alpha

If alpha and beta are the roots of the equation, 7x^2 -3x -2 = 0 , then the value of (alpha )/(1 - alpha^2) + (beta)/(1 + beta^2) is equal to :

If alpha,beta be the roots of the equation 3x^(2)-6x+4=0, then find the value of ((alpha^(2))/(beta)+(beta^(2))/(alpha))+((alpha)/(beta)+(beta)/(alpha))+2((1)/(alpha)+(1)/(beta))+3 alpha beta

If alpha and beta are the roots of the equation 2x^2+3x-6 then find the value of alpha^2+beta^2

If alpha and beta are the roots of the equation x^(2) -x+7=0 , then find the value of alpha^(2) + beta^(2) .

If alpha, beta are the roots of equation 3x^(2)-4x+2=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is