Home
Class 12
MATHS
If veca,vecb,vecc are three vectors such...

If `veca,vecb,vecc` are three vectors such that `|veca|=2,|vecb|=4,|vecc|=4,vecb.vecc=0,vecb.veca=vecc.veca`, then find the value of `|veca+veca-vecc|`

A

6

B

`sqrt(6)`

C

`7`

D

`2sqrt(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( |\vec{a} + \vec{b} - \vec{c}| \) given the conditions on the vectors \( \vec{a}, \vec{b}, \) and \( \vec{c} \). ### Step-by-Step Solution: 1. **Given Information:** - \( |\vec{a}| = 2 \) - \( |\vec{b}| = 4 \) - \( |\vec{c}| = 4 \) - \( \vec{b} \cdot \vec{c} = 0 \) (indicating that \( \vec{b} \) and \( \vec{c} \) are orthogonal) - \( \vec{b} \cdot \vec{a} = \vec{c} \cdot \vec{a} \) 2. **Finding the Magnitude of \( |\vec{a} + \vec{b} - \vec{c}| \):** We can express the magnitude squared: \[ |\vec{a} + \vec{b} - \vec{c}|^2 = (\vec{a} + \vec{b} - \vec{c}) \cdot (\vec{a} + \vec{b} - \vec{c}) \] 3. **Expanding the Dot Product:** \[ |\vec{a} + \vec{b} - \vec{c}|^2 = \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} + 2(\vec{a} \cdot \vec{b}) - 2(\vec{a} \cdot \vec{c}) - 2(\vec{b} \cdot \vec{c}) \] 4. **Substituting Known Values:** - \( \vec{a} \cdot \vec{a} = |\vec{a}|^2 = 2^2 = 4 \) - \( \vec{b} \cdot \vec{b} = |\vec{b}|^2 = 4^2 = 16 \) - \( \vec{c} \cdot \vec{c} = |\vec{c}|^2 = 4^2 = 16 \) - \( \vec{b} \cdot \vec{c} = 0 \) (since they are orthogonal) - From the condition \( \vec{b} \cdot \vec{a} = \vec{c} \cdot \vec{a} \), let \( \vec{b} \cdot \vec{a} = k \). Then \( \vec{c} \cdot \vec{a} = k \) as well. 5. **Putting Everything Together:** \[ |\vec{a} + \vec{b} - \vec{c}|^2 = 4 + 16 + 16 + 2k - 2k - 0 \] \[ = 4 + 16 + 16 = 36 \] 6. **Taking the Square Root:** \[ |\vec{a} + \vec{b} - \vec{c}| = \sqrt{36} = 6 \] ### Final Answer: The value of \( |\vec{a} + \vec{b} - \vec{c}| \) is \( 6 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca, vecb,vecc are three on-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)=vecc=0 then (vecaxxvecb)xxvecc is

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb and vecc are three vectors such that 3veca+4vecb+6vecc=vec0, |veca|=3, |vecb|=3 and |vecc|=4 , then the value of -864((veca.vecb+vecb.vecc+vecc.veca)/(6)) is equal to

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca,vecbandvecc are three vectors such that veca+vecb+vecc=0and|veca|=2,|vecb|=3and|vecc|=5 , then the value of veca.vecb+vecb.vecc+vecc.veca is