Home
Class 12
MATHS
((-1+sqrt(3)i)/(1-i))^(30) simplifies to...

`((-1+sqrt(3)i)/(1-i))^(30)` simplifies to

A

`-2^(15)i`

B

`2^(15)i`

C

`2^(15)`

D

`-2^(15)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(\left(\frac{-1+\sqrt{3}i}{1-i}\right)^{30}\), we will convert the complex numbers into polar form and then apply De Moivre's theorem. ### Step 1: Convert the numerator \(-1 + \sqrt{3}i\) to polar form 1. **Calculate the modulus**: \[ r = |z| = \sqrt{(-1)^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] 2. **Calculate the argument**: \[ \theta = \tan^{-1}\left(\frac{\text{Imaginary part}}{\text{Real part}}\right) = \tan^{-1}\left(\frac{\sqrt{3}}{-1}\right) \] Since the point \((-1, \sqrt{3})\) is in the second quadrant, we can find the angle: \[ \theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \] 3. **Express in polar form**: \[ -1 + \sqrt{3}i = 2 \left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) = 2e^{i\frac{2\pi}{3}} \] ### Step 2: Convert the denominator \(1 - i\) to polar form 1. **Calculate the modulus**: \[ r = |z| = \sqrt{(1)^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \] 2. **Calculate the argument**: \[ \theta = \tan^{-1}\left(\frac{-1}{1}\right) = -\frac{\pi}{4} \] 3. **Express in polar form**: \[ 1 - i = \sqrt{2} \left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right) = \sqrt{2} e^{-i\frac{\pi}{4}} \] ### Step 3: Combine the fractions Now we can write the original expression: \[ \frac{-1+\sqrt{3}i}{1-i} = \frac{2e^{i\frac{2\pi}{3}}}{\sqrt{2}e^{-i\frac{\pi}{4}}} \] This simplifies to: \[ \frac{2}{\sqrt{2}} e^{i\left(\frac{2\pi}{3} + \frac{\pi}{4}\right)} = \sqrt{2} e^{i\left(\frac{2\pi}{3} + \frac{\pi}{4}\right)} \] ### Step 4: Find a common denominator for the angles To add the angles: \[ \frac{2\pi}{3} = \frac{8\pi}{12}, \quad \frac{\pi}{4} = \frac{3\pi}{12} \] Thus, \[ \frac{2\pi}{3} + \frac{\pi}{4} = \frac{8\pi}{12} + \frac{3\pi}{12} = \frac{11\pi}{12} \] So we have: \[ \frac{-1+\sqrt{3}i}{1-i} = \sqrt{2} e^{i\frac{11\pi}{12}} \] ### Step 5: Raise to the power of 30 Now we raise the expression to the power of 30: \[ \left(\sqrt{2} e^{i\frac{11\pi}{12}}\right)^{30} = (\sqrt{2})^{30} \cdot e^{i\frac{30 \cdot 11\pi}{12}} = 2^{15} \cdot e^{i\frac{330\pi}{12}} = 2^{15} \cdot e^{i\frac{55\pi}{2}} \] ### Step 6: Simplify the angle Now, simplify \(\frac{55\pi}{2}\): \[ \frac{55\pi}{2} = 27\pi + \frac{\pi}{2} = 27\pi + \frac{\pi}{2} \equiv \frac{\pi}{2} \text{ (mod } 2\pi\text{)} \] ### Step 7: Final expression Thus, we have: \[ 2^{15} e^{i\frac{\pi}{2}} = 2^{15} \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) = 2^{15} \cdot (0 + i) = 2^{15} i \] ### Conclusion The final result is: \[ \left(\frac{-1+\sqrt{3}i}{1-i}\right)^{30} = 2^{15} i \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt((1+i)/(1-i))

sqrt((1+i)/(1-i))

log((1+i sqrt(3))/(1-i sqrt(3)))

((1+i sqrt(3))/(1-i sqrt(3)))^(n) is an integer,then n is

((1+sqrt(3)i)/(1-sqrt(3)i))^(181) + ((1-sqrt(3)i)/(1+sqrt(3)i))^(181) is equal to ______________

If i=sqrt(-)1, then 4+5(-(1)/(2)+(i sqrt(3))/(2))^(334)+3(-(1)/(2)+(i sqrt(3))/(2))^(365) is equal to (1)1-i sqrt(3)(2)-1+i sqrt(3)(3)i sqrt(3)(4)-i sqrt(3)

((-1+i sqrt(3))^(15))/((1-i)^(20))+((-1-i sqrt(3))^(15))/((1+i)^(20)) is

What is the value of ((-1+i sqrt(3))/(2))^(3n)+((-1-i sqrt(3))/(2))^(3n), where i=sqrt(-1)?