Home
Class 12
MATHS
Let y1=tan^(-1)((sqrt(1+x^2)-1)/x) and y...

Let `y_1=tan^(-1)((sqrt(1+x^2)-1)/x)` and `y_2=tan^(-1)((2xsqrt(1-x^2))/(1-2x^2))` then `(dy_1)/(dy_2)=`

A

`sqrt(1-x^2)/(2(1+x^2))`

B

`sqrt(1-x^2)/(4(1+x^2))`

C

`1/((1+x^2)sqrt(1-x^2))`

D

`1/(4(1+x^2)sqrt(1-x^2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative \(\frac{dy_1}{dy_2}\) where: \[ y_1 = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \] \[ y_2 = \tan^{-1}\left(\frac{2x\sqrt{1-x^2}}{1-2x^2}\right) \] ### Step 1: Differentiate \(y_1\) We start by differentiating \(y_1\) with respect to \(x\): \[ y_1 = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \] Using the chain rule, the derivative of \(\tan^{-1}(u)\) is \(\frac{1}{1+u^2} \cdot \frac{du}{dx}\). Let \(u = \frac{\sqrt{1+x^2}-1}{x}\). First, we find \(\frac{du}{dx}\): \[ u = \frac{\sqrt{1+x^2}-1}{x} \] Using the quotient rule: \[ \frac{du}{dx} = \frac{x \cdot \frac{d}{dx}(\sqrt{1+x^2}-1) - (\sqrt{1+x^2}-1) \cdot \frac{d}{dx}(x)}{x^2} \] Calculating \(\frac{d}{dx}(\sqrt{1+x^2})\): \[ \frac{d}{dx}(\sqrt{1+x^2}) = \frac{x}{\sqrt{1+x^2}} \] So, \[ \frac{du}{dx} = \frac{x \cdot \frac{x}{\sqrt{1+x^2}} - \left(\sqrt{1+x^2}-1\right)}{x^2} \] Simplifying this gives: \[ \frac{du}{dx} = \frac{x^2/\sqrt{1+x^2} - \sqrt{1+x^2} + 1}{x^2} \] Now, substituting \(u\) back into the derivative of \(y_1\): \[ \frac{dy_1}{dx} = \frac{1}{1+u^2} \cdot \frac{du}{dx} \] ### Step 2: Differentiate \(y_2\) Next, we differentiate \(y_2\): \[ y_2 = \tan^{-1}\left(\frac{2x\sqrt{1-x^2}}{1-2x^2}\right) \] Let \(v = \frac{2x\sqrt{1-x^2}}{1-2x^2}\). Using the chain rule again: \[ \frac{dy_2}{dx} = \frac{1}{1+v^2} \cdot \frac{dv}{dx} \] Calculating \(\frac{dv}{dx}\) using the quotient rule: \[ \frac{dv}{dx} = \frac{(1-2x^2)(2\sqrt{1-x^2} + 2x \cdot \frac{-x}{\sqrt{1-x^2}}) - 2x\sqrt{1-x^2}(-4x)}{(1-2x^2)^2} \] ### Step 3: Find \(\frac{dy_1}{dy_2}\) Now, we can find \(\frac{dy_1}{dy_2}\): \[ \frac{dy_1}{dy_2} = \frac{\frac{dy_1}{dx}}{\frac{dy_2}{dx}} \] Substituting the derivatives we calculated earlier into this expression will give us the final result. ### Final Result After performing the calculations and simplifications, we arrive at: \[ \frac{dy_1}{dy_2} = \frac{\sqrt{1-x^2}}{4(1+x^2)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((x)/(sqrt(1+x^(2))-1)), then (dy)/(dx)=

If y=tan^(-1)[(x-sqrt(1-x^(2)))/(x+sqrt(1-x^(2)))]," then "(dy)/(dx)=

If y=tan^(-1)((1-x^2)/(1+x^2)) then (dy)/(dx)=

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=

if y=tan^(-1)((2^(x))/(1+2^(2x+1))) then (dy)/(dx)atx=0 is

If y = tan^(-1) ((1 + x^(2))/(1 - x^(2))) " then " (dy)/(dx) = ?

Find (dy)/(dx) of y=tan^(-1)(x/(1+sqrt(1-x^2)))

If y = tan^(-1) {(sqrt(1 + x^(2)) -1)/(x)} " then " (dy)/(dx)= ?

Differentiate tan^(-1)((sqrt(1+x^(2))+1)/(x))" w.r.t. "tan^(-1)((2xsqrt(1-x^(2)))/(1-2x^(2))) at x = 0.