Home
Class 12
MATHS
int(costheta)/(7+sintheta-2cos^2theta)d ...

`int(costheta)/(7+sintheta-2cos^2theta)d theta` is equal to

A

`2/sqrt(39)tan^(-1)((2sintheta+1)/sqrt(39))+C`

B

`2/sqrt(39)tan^(-1)((4sintheta+1)/sqrt(39))+C`

C

`4/sqrt(39)tan^(-1)((4sintheta+1)/sqrt(39))+C`

D

`4/sqrt(39)tan^(-1)((2sintheta+1)/sqrt(39))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\cos \theta}{7 + \sin \theta - 2 \cos^2 \theta} \, d\theta, \] we will follow these steps: ### Step 1: Rewrite the Denominator First, we can rewrite \(2 \cos^2 \theta\) using the identity \(\cos^2 \theta = 1 - \sin^2 \theta\): \[ 2 \cos^2 \theta = 2(1 - \sin^2 \theta) = 2 - 2 \sin^2 \theta. \] Thus, the denominator becomes: \[ 7 + \sin \theta - 2 \cos^2 \theta = 7 + \sin \theta - (2 - 2 \sin^2 \theta) = 5 + \sin \theta + 2 \sin^2 \theta. \] ### Step 2: Substitute \( \sin \theta = t \) Let \( t = \sin \theta \). Then, \( d\theta = \frac{dt}{\cos \theta} \). Since \(\cos^2 \theta = 1 - \sin^2 \theta = 1 - t^2\), we have \(\cos \theta = \sqrt{1 - t^2}\). Therefore, the integral becomes: \[ I = \int \frac{\sqrt{1 - t^2}}{5 + t + 2t^2} \cdot \frac{dt}{\sqrt{1 - t^2}} = \int \frac{1}{5 + t + 2t^2} \, dt. \] ### Step 3: Completing the Square Next, we need to complete the square in the denominator \(5 + t + 2t^2\). We can rewrite it as: \[ 2t^2 + t + 5 = 2\left(t^2 + \frac{1}{2}t + \frac{5}{2}\right). \] To complete the square inside the parentheses: \[ t^2 + \frac{1}{2}t = \left(t + \frac{1}{4}\right)^2 - \frac{1}{16}. \] Thus, \[ 5 + t + 2t^2 = 2\left(\left(t + \frac{1}{4}\right)^2 + \frac{39}{16}\right). \] ### Step 4: Substitute Back into the Integral Now, substituting this back into the integral, we have: \[ I = \frac{1}{2} \int \frac{1}{\left(t + \frac{1}{4}\right)^2 + \left(\frac{\sqrt{39}}{4}\right)^2} \, dt. \] ### Step 5: Use the Arctangent Formula The integral of the form \(\int \frac{1}{x^2 + a^2} \, dx\) is \(\frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C\). Here, \(x = t + \frac{1}{4}\) and \(a = \frac{\sqrt{39}}{4}\): \[ I = \frac{1}{2} \cdot \frac{4}{\sqrt{39}} \tan^{-1} \left(\frac{4(t + \frac{1}{4})}{\sqrt{39}}\right) + C. \] ### Step 6: Substitute Back \(t = \sin \theta\) Substituting back \(t = \sin \theta\): \[ I = \frac{2}{\sqrt{39}} \tan^{-1} \left(\frac{4 \sin \theta + 1}{\sqrt{39}}\right) + C. \] ### Final Answer Thus, the final result of the integral is: \[ I = \frac{2}{\sqrt{39}} \tan^{-1} \left(\frac{4 \sin \theta + 1}{\sqrt{39}}\right) + C. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int(1+sin2theta)/(sintheta-costheta)d""theta is equal to

int(cos2theta)/((sintheta+costheta)^(2))d""theta is equal to

int(1-costheta)^2 d theta is equal to

int(costheta-cos2theta)/(1-cos theta)d theta=

int (cos2theta) . log((costheta+sintheta)/(costheta-sintheta))d theta is equal to

The value of (cos^(3)theta+sin^(3)theta)/(costheta+sintheta)+(cos^(3)theta-sin^(3)theta)/(costheta-sintheta) is equal to

The value of (sintheta-2sin^(3)theta)/(2cos^(3)theta-costheta) is equal to

If (sintheta+costheta)/(sintheta-costheta)=3 , then find the value of sin^(4)theta-cos^(4)theta .