Home
Class 12
MATHS
If x+a=y+b+1=z+c then the value of [[x, ...

If `x+a=y+b+1=z+c` then the value of `[[x, (a+y), (a+x)], [y, (b+y), (b+y)], [z, (c+y), (c+z)]]` is

A

`y(a-b)`

B

`y(b-c)`

C

`y(c-a)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the matrix given the condition \( x + a = y + b + 1 = z + c \). Let's denote this common value as \( k \): \[ k = x + a = y + b + 1 = z + c \] From this, we can express \( x \), \( y \), and \( z \) in terms of \( k \): \[ x = k - a \] \[ y = k - b - 1 \] \[ z = k - c \] Now, we can substitute these values into the matrix: \[ \begin{bmatrix} x & a + y & a + x \\ y & b + y & b + y \\ z & c + y & c + z \end{bmatrix} \] Substituting \( x \), \( y \), and \( z \): \[ \begin{bmatrix} k - a & a + (k - b - 1) & a + (k - a) \\ k - b - 1 & b + (k - b - 1) & b + (k - b - 1) \\ k - c & c + (k - b - 1) & c + (k - c) \end{bmatrix} \] Now, simplifying each element: 1. First row: - First element: \( k - a \) - Second element: \( a + k - b - 1 = k + a - b - 1 \) - Third element: \( a + k - a = k \) 2. Second row: - First element: \( k - b - 1 \) - Second element: \( b + k - b - 1 = k - 1 \) - Third element: \( k - b - 1 \) 3. Third row: - First element: \( k - c \) - Second element: \( c + k - b - 1 = k + c - b - 1 \) - Third element: \( c + k - c = k \) Thus, the matrix becomes: \[ \begin{bmatrix} k - a & k + a - b - 1 & k \\ k - b - 1 & k - 1 & k - b - 1 \\ k - c & k + c - b - 1 & k \end{bmatrix} \] Next, we will simplify this matrix using column operations. We can perform the operation \( C_3 \to C_3 - C_1 \): \[ \begin{bmatrix} k - a & k + a - b - 1 & 0 \\ k - b - 1 & k - 1 & 0 \\ k - c & k + c - b - 1 & 0 \end{bmatrix} \] Now, we can see that the third column is all zeros, which means the determinant of this matrix is zero. Thus, the value of the matrix is: \[ \text{Value of the matrix} = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a=x-y,b=y-z and c=z-x then the value of a^(3)+b^(3)+c^(3)

If x=y^(a),y=z^(b)andz=x^(c) , then the value of abc is