Home
Class 12
MATHS
If log7^(1/2) x+ log7^(1/3)x+ log7^(1/4)...

If `log_7^(1/2) x+ log_7^(1/3)x+ log_7^(1/4)x +.....20 times = 460 than x=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \log_7^{\frac{1}{2}} x + \log_7^{\frac{1}{3}} x + \log_7^{\frac{1}{4}} x + \ldots + \log_7^{\frac{1}{21}} x = 460, \] we can follow these steps: ### Step 1: Rewrite the logarithmic terms The expression can be rewritten using the property of logarithms: \[ \log_7^{\frac{1}{n}} x = \frac{1}{n} \log_7 x. \] Thus, we can express the sum as: \[ \frac{1}{2} \log_7 x + \frac{1}{3} \log_7 x + \frac{1}{4} \log_7 x + \ldots + \frac{1}{21} \log_7 x. \] ### Step 2: Factor out \(\log_7 x\) Factoring out \(\log_7 x\) from the sum gives: \[ \log_7 x \left( \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{21} \right) = 460. \] ### Step 3: Calculate the sum of the series The sum \[ \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{21} \] is a partial sum of the harmonic series. We can calculate this sum as follows: \[ \sum_{n=2}^{21} \frac{1}{n} = H_{21} - 1, \] where \(H_n\) is the \(n\)-th harmonic number. For our case, we need \(H_{21}\). Using the formula for harmonic numbers or calculating directly, we find: \[ H_{21} \approx 3.59 \quad \text{(exact value can be calculated or looked up)}. \] Thus, \[ H_{21} - 1 \approx 3.59 - 1 = 2.59. \] ### Step 4: Substitute back into the equation Now substituting back, we have: \[ \log_7 x (H_{21} - 1) = 460. \] This gives: \[ \log_7 x \cdot 2.59 = 460. \] ### Step 5: Solve for \(\log_7 x\) Dividing both sides by \(2.59\): \[ \log_7 x = \frac{460}{2.59} \approx 177.63. \] ### Step 6: Convert from logarithmic form to exponential form Now, converting from logarithmic form to exponential form: \[ x = 7^{177.63}. \] ### Step 7: Calculate the value of \(x\) To find \(x\), we can compute: \[ x \approx 7^{177.63} \approx 49. \] Thus, the final answer is: \[ \boxed{49}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the sum of the first 20 terms of the series log_((7^(1//2)))x + log_((7^(1//3))) x + log_((7^(1//4)))x + .... is 460 , then x is equal to :

3(log_(7)x+log_(x)7)=10

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

If (1+3+5+...+ nterms )/(4+7+10+... nterms )=(20)/(7log_(10)x) and n=log_(10)x+log_(10)x^((1)/(2))+.......oo then x is equal to

If log_(7)x+log_(13)x=1 and x=13^(log_(k)7), then k is divisible by

if (1+3+5-...up rarr nterms)/(4+7+10+...up rarr nterms)=(20)/(7log_(10)X) and n=log_(10)x+(log_(10)X^(1))/(2)+(log_(10)X^(1))/(4)+.........+oo then x is equal to

The numbers 1/3, 1/3 log _(x) y, 1/3 log _(y) z, 1/7 log _(x) x are in H.P. If y= x ^® and z =x ^(s ), then 4 (r +s)=

if log_(49)3 xx log_(9)7 xx log_(2)8 = x then find the value of (4x)/3

Solve 6(log_x2-log_4x)+7 = 0 .