Home
Class 12
MATHS
lim(x->1) [sin^(-1)x]=...

`lim_(x->1) [sin^(-1)x]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr1)[sin^(-1)x]=

The value of lim_(x rarr1)[sin^(-1)x] is : (Where [.) denotes greatest integer function).

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

lim_(x rarr1)(sin^(-1)x)/(tan(pi(x)/(2)))

Show : lim_( x -> 0 ) tan^(-1)x/ sin^(-1)x = 1

Evaluate : lim_( x -> 0 ) Sin^(-1 ) x /(( x^(1/4 ) - 1 )

The largets value of non negative integer for which lim_(x->1){(-a x+sin(x-1)+a]1-sqrt(x))/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4

The largets value of non negative integer for which lim_(x->1){(-a x+sin(x-1)+a)/(x+sin(x-1)-1)}^((1-x)/(1-sqrt(x)))=1/4