Home
Class 12
MATHS
If alpha, beta are different complex num...

If `alpha, beta` are different complex numbers with `|beta|=1` then `|(alpha-beta)/(1-alphabar(beta))|=` (i)`0` (ii)`1/2` (iii)`1` (iv)`2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are different complex numbers with | beta|=1 then |(alpha-beta)/(1-alphabar(beta))|=(i)0(ii)(1)/(2)(iii)1(iv)2

If alpha and beta are different complex numbers with |beta|=1 , then find |(beta-alpha)/(1-baralpha beta)|

If alpha and beta are different complex numbers with |beta|=1 , then find |(beta -alpha)/(1-baralphabeta)|

If alpha and beta are different complex numbers with |beta|=1 , then find |(beta -alpha)/(1-baralphabeta)|

If alpha and beta are different complex numbers with |beta|=1 , then find |(beta -alpha)/(1-baralphabeta)|

If alpha and beta are different complex numbers with |beta|=1 , then find |(beta -alpha)/(1-baralphabeta)|

If alpha and beta are different complex numbers with |beta|=1, then find |(beta-alpha)/(1- baralphabeta)| .

If alpha and beta are different complex numbers with |beta|=1, then find |(beta-alpha)/(1- baralphabeta)| .

If alpha and beta are different complex numbers with |beta|=1, then find |(beta-alpha)/(1- baralphabeta)| .

If alpha and beta are different complex numbers with |beta|=1, then find |(beta-alpha)/(1- baralphabeta)| .