Home
Class 12
MATHS
Tangent is drawn at any point P of a cur...

Tangent is drawn at any point P of a curve which passes through `(1, 1)` cutting x-axis and y-axis at A and B respectively. If `AP: BP = 3:1`, then,

Promotional Banner

Similar Questions

Explore conceptually related problems

A tangent drawn to the curve y=f(x) at P(x,y) cuts the x-axis and y-axis at A and B respectively such that BP:AP=2:1 . Given that f(1)=1 . Answer the question:The curve passes through the point (A) (2,1/4) (B) (2,1/2) (C) (2,1/8) (D) none of these

A tangent drawn to the curve y=f(x) at P(x,y) cuts the x-axis and y-axis at A and B respectively such that BP:AP=2:1 . Given that f(1)=1 . Answer the question:The curve passes through the point (A) (2,1/4) (B) (2,1/2) (C) (2,1/8) (D) none of these

A tangent drawn to the curve y=f(x) at P(x,y) cuts the x-axis and y-axis at A and B respectively such that BP:AP=2:1 . Given that f(1)=1 . Answer the question:Equation of normal to curve at (1,1) is (A) x-4y+3=0 (B) x-3y+2=0 (C) x-2y+1=0 (D) none of these

A tangent drawn to the curve y=f(x) at P(x,y) cuts the x-axis and y-axis at A and B respectively such that BP:AP=2:1 . Given that f(1)=1 . Answer the question:Equation of normal to curve at (1,1) is (A) x-4y+3=0 (B) x-3y+2=0 (C) x-2y+1=0 (D) none of these

A tangent drawn to the curve y=f(x) at P(x,y) cuts the x-axis and y-axis at A and B respectively such that BP:AP=2:1 . Given that f(1)=1 . Answer the question:Equation of curve is (A) y=1/x (B) y=1/x^2 (C) y=1/x^3 (D) none of these

A tangent drawn to the curve y=f(x) at P(x,y) cuts the x-axis and y-axis at A and B respectively such that BP:AP=2:1 . Given that f(1)=1 . Answer the question:Equation of curve is (A) y=1/x (B) y=1/x^2 (C) y=1/x^3 (D) none of these

A normal is drawn at a point P(x , y) of a curve. It meets the x-axis and the y-axis in point A AND B , respectively, such that 1/(O A)+1/(O B) =1, where O is the origin. Find the equation of such a curve passing through (5, 4)

A normal is drawn at a point P(x , y) of a curve. It meets the x-axis and the y-axis in point A AND B , respectively, such that 1/(O A)+1/(O B) =1, where O is the origin. Find the equation of such a curve passing through (5. 4)