Home
Class 12
MATHS
int1/(1-cosx-sinx)\ dx= log|1+cotx/2|+C...

`int1/(1-cosx-sinx)\ dx=` `log|1+cotx/2|+C` (b) `log|1-tanx/2|+C` (c) `log|1-cotx/2|+C` (d) `log|1+tanx/2|+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(1-cos x-sin x)dx=log|1+(cot x)/(2)|+C(b)log|1-(tan x)/(2)|+C (c) log|1-(cot x)/(2)|+C(d)log|1+(tan x)/(2)|+C

int tanx dx=-log |cosx|+c

int_0^(pi/2) log|tanx+cotx|dx =

int_0^(pi//2)(cosx)/((2+sinx)(1+sinx))dx equals (a) log(2/3) (b) log(3/2) (c) log(3/4) (d) log(4/3)

(i) int sec x dx=|log| tanx|+c (ii) int sec dx=log |secx+tanx|+c

If int(1+cosx)/(cosx-cos^(2)x)dx=log|secx+tanx|-f(x)+C ,then f(x)=......

int(x+sinx)/(1+cosx)dx= (A) xtan(x/2)+c (B) log(1-cosx)+c (C) (tan(x/2))/2+c (D) none of these

int(cos2x-1)/(cos2x+1)\ dx= (a) tanx-x+C (b) x+tanx+C (c) x-tanx+C (d) x-cotx+C

int(dx)/(cosx-sinx) is equal to a) (1)/(sqrt(2))log|tan(pi/2-pi/8)|+c b) (1)/(sqrt(2))log|cot(x/2)|+c c) (1)/(sqrt(2))log|tan(pi/2-(3pi)/(8))|+c d) (1)/(sqrt(2))log|tan(x/2+(3pi)/(8))|+c

int(secxcosecx)/(2cotx-secxcosecx)dx is equal to a) log|secx+tanx|+c b) log|secx+cosecx|+c c) (1)/(2)log|sec2x+tan2x|+c d) log|sec2x+cosec2x|+c