Home
Class 11
MATHS
If A=1/3{:[(1,2,2),(2,1,-2),(a,2,b)]:} i...

If `A=1/3{:[(1,2,2),(2,1,-2),(a,2,b)]:}` is an orthogonal matrix, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=1/3|[1, 2, 2], [2, 1,-2],[a,2,b]| is an orthogonal matrix, then a=-2 b. a=2,b=1 c. b=-1 d. b=1

If A=1/3|[1, 2, 2], [2, 1,-2],[a,2,b]| is an orthogonal matrix, then a=-2 b. a=2,b=1 c. b=-1 d. b=1

STATEMENT -1 : A=(1)/(3){:[(1,-2,2),(-2,1,2),(-2,-2,-1)]:} is an orthogonal matrix and STATEMENT-2 : If A and B are otthogonal, then AB is also orthogonal.

STATEMENT -1 : a=(1)/(3){:[(1,-2,2),(-2,1,2),(-2,-2,-1)]:} is an orthogonal matrix and STATEMENT-2 : If A and B are otthogonal, then AB is also orthogonal.

Prove that A=1/3[(1,2,2),(2,1,-2),(-2,2,-1)] is an orthogonal matrix.

Show that A=(1)/(3)[{:(-1,2,-2),(-2,1,2),(2,2,1):}] is proper orthogonal matrix.

The matrix A=1/3{:[(1,2,2),(2,1,-2),(-2,2,-1)]:} is 1) orthogonal 2) involutory 3) idempotent 4) nilpotent

Show the A=(1)/(3)[(-1,2,-2),(-2,1,2),(2,2,1)] is proper orthogonal matrix.

Show that , A^(-1) = (1)/(3) [(-1,2,-2),(-2,1,-2),(2,2,1)] is a proper orthogonal matrix.

If A=(1)/(3)[[1,2,22,1,-2a,2,b]] is an orthogonal ,b=-1 d.b=1