Home
Class 12
MATHS
If for all real values of ua n dv ,2f(u)...

If for all real values of `ua n dv ,2f(u)cosv=(u+v)+f(u-v),` prove that for all real values of `x ,` `f(x)+f(-x)=2acosxdot` `f(pi-x)+f(-x)=0` `f(pi-x)+f(x)=2bsinxdot` Deduce that `f(x)=acosx+bsinx ,w h e r ea ,b` are arbitrary constants.

Promotional Banner

Similar Questions

Explore conceptually related problems

If for all real values of ua n dv ,2f(u)cosv=f(u+v)+f(u-v), prove that for all real values of x , f(x)+f(-x)=2acosxdot f(pi-x)+f(-x)=0 f(pi-x)+f(x)=2bsinxdot Deduce that f(x)=acosx+bsinx ,w h e r ea ,b are arbitrary constants.

If for all real values of u and v,2f(u)cos v=(u+v)+f(u-v) prove that for all real values of x,f(x)+f(-x)=2a cos xf(pi-x)+f(-x)=0f(pi-x)+f(x)=2b sin x. Deduce that f(x)=a cos x+b sin x, where a,b are arbitrary constants.

If f(x)=2 for all real numbers x, then f(x+2)=

If f is a real-valued differentiable function such that f(x) f'(x)lt0 for all real x, then

If 'f' is a real valued differentiable function such that f(x) f'(x) < 0 for all real x, then

If f is a real- valued differentiable function such that f(x)f'(x) lt 0 for all real x, then

If f is a real-valued differentiable function such that f(x)f'(x)lt0 for all real x, then -

If f is real-valued differentiable function such that f(x)f'(x)<0 for all real x, then

If f is real-valued differentiable function such that f(x)f'(x)<0 for all real x, then

If f is real-valued differentiable function such that f(x)f'(x)<0 for all real x, then